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Essays in Econometrics and Dynamic Kidney Exchange

Vitor Baisi Hadad

Abstract This dissertation is divided into two parts.

Part I - Dynamic Kidney Exchange In recent years, kidney paired donation

(KPD) has an emerged as an attractive alternative for end-stage renal disease patients

with incompatible living donors. However, we argue that the matching algorithm

currently used by organ clearinghouses is ine�cient, in the sense that a larger number

of patients may be reached if kidney transplant centers take into consideration how

their pool of patients and donors will evolve over time. In our work Two Novel

Algorithms for Dynamic Kidney Exchange, we explore this claim and propose new

computational algorithms to increase the cardinality of matchings in a discrete-time

dynamic kidney exchange model with Poisson entries and Geometric deaths.

Our algorithms are classified into direct prediction methods and multi-armed ban-

dit methods. In the direct prediction method, we use machine learning estimator to

produce a probability that each patient-donor pair should be matched today, as op-

posed to being left for a future matching. The estimators are trained on o✏ine optimal

solutions. In contrast, in multi-armed bandit methods, we use simulations to evaluate

the desirability of di↵erent matchings. Since the amount of di↵erent matchings is

enormous, multi-armed bandits (MAB) are employed to decrease order to decrease

the computational burden.

Our methods are evaluated using simulations in a variety of simulation config-

urations. We find that the performance of at least one of our methods, based on

multi-armed bandit algorithms, is able to uniformly dominate the myopic method

that is used by kidney transplants in practice.

We restrict our experiments to pairwise kidney exchange, but the methods de-

scribed here are easily extensible, computational constraints permitting.
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Part II - Econometrics In our econometric paper Heterogenous Production Func-

tions, Panel Data, and Productivity, we present methods for identification of moments

and nonparametric marginal distributions of endogenous random coe�cient models

in fixed-T linear panel data models.

Our identification strategy is constructive, immediately leading to relatively simple

estimators that can be shown to be consistent and asymptotically normal. Because

our strategy makes use of special properties of “small” (measure-zero) subpopulations,

our estimators are irregularly identified: they can be shown to be consistent and

asymptotically Normal, but converge at rates slower than root-n.

We provide an illustration of our methods by estimating first and second moments

of random Cobb-Douglas coe�cients in production functions, using Indian plant-level

microdata.
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Dynamic kidney exchange
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Two novel algorithms for dynamic

kidney exchange

Vitor Hadad

1 Introduction

Patients su↵ering from end-stage renal disease have two available treatments: dialysis

and renal transplant. While transplant is associated with “lower mortality rates

and improved quality of life compared to chronic dialysis treatment” (Tonelli et al.,

2011), severe kidney shortages prevent tens of thousands of patients every year from

receiving a transplant. In the US alone, there are currently over 90,000 patients in the

kidney transplant waiting list. These patient may wait several years before finding

an available donor, and many will die – often of co-morbidities – before receiving a

transplant.

In order to overcome this challenge, kidney paired donation (KPD) has emerged

as an alternative option for patients who have an incompatible but otherwise willing

living donor. This approach, conceived about three decades ago by Rapaport (1986),

involves pooling patient-donor pairs and swapping or exchanging donors so as to

increase the overall number of matched patients. Nowadays, KPD programs have

become common both in the United States and internationally, and patients are

actively encourage to participate in them. (LaPointe Rudow et al., 2015)
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Nevertheless, the total amount of kidney exchanges still remains smaller than its

potential. As we will argue in this paper, one source of ine�ciency in KPD is that

most transplant centers do not take into consideration the evolution of the pool of

donors and pairs over time, which can lead to large long-run losses in terms of the

overall cardinality of matched pairs.

To overcome this issue, in this paper we contribute to the dynamic kidney match-

ing literature by introducing two novel algorithms for kidney exchange. They are

explained next.

Main idea This paper proposes two novel approaches for increasing the cardinality

of matched pairs in a discrete-time dynamic model of kidney exchange: the direction

prediction and the multi-armed-bandit methods.

First, our direct prediction method recasts the dynamic kidney exchange problem

as a binary classification task: for each pair in the pool, we predict a binary label

representing whether they should be matched today (one), or left for the future (zero),

given their observable characteristics. This prediction is produced by an estimator

trained in a large a number of simulations that were solved by an o✏ine solver.

The main challenge with this approach is how to represent the data that will be

fed to the estimator. While covariates such as ABO blood type and current waiting

times can be naturally represented by real numbers, it is not immediately clear how

to represent the relationship between pairs in a kidney matching pool, which is a

global, graph-theoretic concept. We attempt to overcome this issue by augmenting

the data set with graph-theoretic notions such as measures of node centrality, size of

graph, average degree, and so on.

Our second method, named the multi-armed bandit (MAB) method, uses simula-

tions to answer the question: “if we commit to matching one particular set of pairs

today, how likely are we to decrease the overall number of matched pairs between

3
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now and a horizon h?”. This probability can be estimated via simulations. However,

the main challenge here is that simulations are so computationally costly, and the

number of available actions so vast, that we are cannot realistically produce accurate

estimates of it for every element of the action space. To overcome this issue, we

employ multi-armed bandit algorithms. Their role is to manage a relatively small

computational budget and determine which actions are more attractive (and should

be explored further), and which are not (so not worth exploring).

Main results Our methods are evaluated entirely via simulations. The simulation

setups, which we call environments, are inspired by models used the kidney exchange

literature, and di↵er by their rules regarding blood- and tissue-type compatibility.

We compare our method against two benchmarks: an algorithm that clears the

maximal matching at each period, called Myopic; an infeasible o✏ine optimal algo-

rithm that we call OPT. The former roughly represents what most organ clearing-

houses are doing today, while the latter represents the maximal payo↵ we could have

achieved, had we been able to know the future. Our metric for comparison is the

per-period average number of matched pairs over a long period of time.

In all environments, we observe that our implementation of the direct estima-

tion method fails to consistently improve upon Myopic. However, the multi-armed

bandit (MAB) method is able to improve uniformly and substantially upon the My-

opic benchmark. In particular, we observe that our MAB does particularly well in

environments of moderate sparsity.

1.1 Related literature

This paper pulls ideas from microeconomics, matching theory, and operations re-

search, and uses methods drawn from computer science and machine learning. Let

us take a brief look at these fields in turn.

4
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1.1.1 Kidney Exchange

Early years In microeconomics, the literature on kidney exchange began with Roth

et al. (2004), who provided a kidney exchange mechanism inspired by the housing

problem studied in the literature of mechanism design as in Shapley and Scarf (1974)

and later Abdulkadiroğlu and Sönmez (1999). While their mechanism had significant

theoretical advantages, it also relied on large number of exchanges being conducted

simultaneously, and drew criticism for making assumptions about heterogeneous pref-

erences over kidneys. Subsequent work by Roth et al. (2005) addressed some of these

criticisms by focusing on logistically simple mechanisms that used only 2-way ex-

changes, and assumed also that patients were indi↵erent between all compatible kid-

neys. In a later paper, Roth et al. (2007) demonstrated via simulations that allowing

for 3-way exchanges in addition to 2-way exchanges could increase the cardinality

of matched pairs by a great deal, but larger cycles would only bring about modest

improvements.

Recent advances in static exchange In the last ten years, both in academia and

in medical practice the focus began to shift from exchanges via cycles to exchanges

emanating from non-directed donors (NDD) – altruistic donors who are willing to

donate their organs to anyone. Such exchanges yield a chain of transplants that

begins with the NDD and may either terminate with the last pair donating to a

waitlist recipient in a kidney registry, or not terminate at all and have the last pair’s

donor await an opportunity to become a future living donor. In the former kind of

exchange, called domino paired donation by Montgomery et al. (2006), all transplants

occur simultaneously. In the second kind, transplants may be spread over several

months. For this reason, the latter kind of transplant is called non-simultaneous,

extended, altruistic donor chain Rees et al. (2009).1

1On occasion, NEAD chains have also been called Never-ending altruistic donor chains, as relayed
by (Roth, 2015, p. 235-6).

5
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A significant amount of attention has been devoted to these NEAD chains, in-

cluding notably Ashlagi et al. (2011) and Ashlagi et al. (2012), whose results show

that NEAD chains benefit highly sensitized patients in sparse pools of moderate size,

because they decrease the need for simultaneous double-coincidence of wants in the

exchange market. In fact, Anderson et al. (2015) reports that “NEAD chains are

responsible for the majority of successful kidney transplants conducted via kidney

exchange at both the [Allied for Paired Donation] and within other major exchange

programs”.

Dynamic kidney exchange The literature concerning the dynamic kidney ex-

change problem, where we take into account the evolution of the kidney exchange

pool over time, is much smaller. It began with a seminal paper by Ünver (2010), who

derives a dynamic mechanism that produces optimal n-way cyclic exchanges in the

steady state of a continuous-time model with Poisson arrivals. The results in that pa-

per rely on three simplifying assumptions. First, that the waiting cost is constant for

all pairs; second, that pairs do not leave the pool unless they are matched; finally, that

pairs within the pool are only blood-type incompatible. It can be shown that, under

these assumptions, all pairs are rendered homogeneous. This dramatically decreases

the dimension of the state space, and allows for an easily interpretable solution.

Ashlagi et al. (2013) note that the graphs of real-life pools tend to be sparse and

filled with pairs that are either easy or extremely hard to match. In order to model

this particular feature, they postulate a sparse heterogeneous random graph model

containing only two such types, and propose a greedy algorithm that waits until the

pool contains a certain number of pairs of each type, and then matches as many as

pairs as possible. In a di↵erent vein, Akbarpour et al. (2017) studies the relationship

between “market thickness” (the number of available pairs in the exchange pool) and

matching time in a simple model of stochastic arrival and departure. They show

6
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that, in their model, greedy algorithms that cleverly exploit the time to match can

can perform close to infeasibly optimal benchmarks, even if these algorithms are

ignorant about the global structure of the graph, and have no information about

agents’ departure times.

In the computer science and operations research literature, Abraham et al. (2007)

and more recently Anderson et al. (2015), Dickerson et al. (2016) and Dickerson et al.

(2017) have mostly focused on producing scalable combinatorial programming algo-

rithms that can take on static matching problems with large graphs and allowing

for both chains and cycles of moderately large length. However, a series of papers

starting with Awasthi and Sandholm (2009) and followed by Dickerson et al. (2012)

and Dickerson and Sandholm (2015) have dealt with the dynamic kidney problem by

weighted myopia. Their idea is to prevent wasteful matchings (e.g., an O-donor to an

AB-patient) by artificially introducing negative weights to graph components contain-

ing them. In Dickerson and Sandholm (2015), these optimal weights are computed

from simulations involving historical data.

Computer science and machine learning We were inspired by several compu-

tational alternatives to dynamic kidney exchange that have been proposed in the past

few years. In particular, the multi-armed bandit method described here is reminis-

cent Algorithm 1 in Awasthi and Sandholm (2009), inasmuch it also selects the best

actions today by repeatedly simulating the future, solving an o✏ine problem, com-

puting a “score” for each cycle, and selecting actions with maximum score. However,

both our simulation and “scoring” methods di↵er importantly because we leverage

multi-armed bandit algorithms to decrease the computational burden of producing

multiple simulations.

Dickerson et al. (2012) and Dickerson and Sandholm (2015) propose a related

method that they call weighted myopia. The idea is to use simulations for learning

7
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“potentials” of specific elements of the graph. Much like the “scores” in Awasthi and

Sandholm (2009), the set of “potentials” associated with a specific exchange encodes

how desirable each exchange is in terms of its future value. The authors then use

these pre-learned numbers to revise the weights in a myopic algorithm, forcing it to

select more desirable exchanges where it would be otherwise indi↵erent. Our direct

prediction method works similarly, with three crucial di↵erences. First, we do not

directly predict how “desirable” a matching will be, but instead we predict whether

or not an o✏ine, optimal algorithm would choose the node or not. Second, our

method uses a more aggressive thresholding mechanism to select which nodes should

be matched today, and which should be left for later. Third, we optionally make

use of information about how the node fits inside the compatibility graph, so that

the information about the node (e.g., the blood type and HLA profile of patient and

donor) is augmented with graph-theoretic notions (e.g., measures of node centrality,

degree, etc).

Sequential decision problems Zooming out of our application, our problem lies

within a larger class of sequential decision problems whose central feature is a concern

with the exploration-exploitation trade-o↵. That is, problems that can be described

as the one faced by an agent who must spend a limited computational budget to

explore a certain action space so as to find and exploit actions that will maximize

her expected rewards. Crucially, the agent sequentially observes rewards for actions

that she has taken, but does not observe rewards for other actions. This class also

encompasses, for example, Markov decision process (MDP) and its variants.

A multi-armed bandit2 (MAB) problem is a particular version of an MDP where

time is discrete, and at every period an agent chooses from a finite and fixed number

2The terminology comes from a turn-of-the-20th-century United States colloquialism, when slot
machines were called “one-armed bandits”. While the name apparently suggests a loss in the long
run, the “bandit” problems studied in academic literature do not necessarily have negative expected
payo↵.

8
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of actions K that produce stochastic rewards. The objective is usually to minimize

the amount of regret that accumulates over time, where regret is loosely defined as the

di↵erence between the agent’s actual accumulated rewards under her own strategy

and an the average reward that the agent would have gotten had she chosen the

optimal action at each period since the beginning. (We will make this definition more

rigorous in a later section). Crucially, at every period the agent only observer rewards

for actions that she has chosen, and not for other actions.

Multi-armed bandit problems were studied sporadically in the last century, with

the earliest reference going as far back in time as Thompson (1933). Interest was

rekindled after a seminal paper by Lai and Robbins (1985), who developed a strategy

that provably attains an asymptotic lower bound of regret. Later, their analysis was

simplified by Agrawal (1995) who also developed a finite-time analysis of regret. In

recent years, other alternative algorithms have been proposed. In particular, in our

paper we use the Thompson sampling algorithm studied by Agrawal and Goyal (2012)

and Kaufmann et al. (2012), and the upper-confidence bound (UCB1) algorithm de-

veloped by Agrawal (1995) and Auer et al. (2002). For an approachable review of

multi-armed bandits, optimal strategies, and their variations, we refer the reader to

the recent book by Lattimore and Szepesvari (2018).

2 Background and definitions

Medical background We say that a patient and a donor are compatible if the

donor’s organ cells do not present antigens that are capable of inducing an aggressive

response by the patient’s immune system. A successful transplant usually requires

patients to be blood-type compatible and tissue-type compatible (also known as histo-

compatible).

Blood-type compatibility refers to compatibility with respect to major ABO blood

9



www.manaraa.com

groups. For example, O-type patients can only receive from O-type donors, AB

patients may receive from any blood group, etc).

For the purposes of this paper, a patient is tissue-type will be called compatible

with a donor if the donor does not present alleles of gene complex called the human

leukocyte antigens (HLA) that are deemed unacceptable by the patient’s immune

system.

Technical definitions We model the dynamic kidney exchange problem in a man-

ner similar to Ünver (2010) and Akbarpour et al. (2017).

A kidney exchange pool is a directed random graph process Gt = (Vt, Et, Xt), t 2 N

whose vertices v 2 Vt represent (patient, donor)-pairs3. A directed edge e 2 Et

between vertex v and v0 means that the donor in pair v can donate to the patient in

pair v0. When such an edge exits, we say that v is compatible with v0.

Each pair is endowed with certain characteristics x 2 Xt
4 such as patient and

donor blood type (other characteristics will be discussed below).

We say that a pair enters the kidney exchange pool when it first becomes available

for exchange. After a certain number of periods, the pair leaves the pool once and

for all, or dies. The di↵erence between entry and death is called a pair’s sojourn.

An exchange is an ordered tuple of nodes m = (vi1 , · · · , vik) where each pair in

the tuple is compatible with the next pair in the sequence. A matching is a set of

exchanges where no pair appears in more than one exchange.

An environment is, informally speaking, a collection of rules governing which pairs

are deemed compatible, the entry and death processes that govern the evolution of the

pool, and which vertex characteristics are observable in and relevant to the problem.

More formally, it can be defined as the conditional probability distribution between

two kidney exchange pools, given the current pool Gt and G0
t
, given a matching Mt.

3Throughout, we will use the terms pair, node and vertex interchangeably.
4In an slight abuse of notation, we will also denote by Xt the matrix of pairs’ observable charac-

teristics.

10
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We will expand on this below. Finally, a dynamic matching algorithm is a procedure

that selects matchings Mt at every period. Once a matching Mt is selected, all

associated vertices and their edges are removed from the kidney exchange pool.

2.1 Environments

Our paper presents three environments inspired by previous works on dynamic kidney

exchange. All three have the following assumptions in common.

First, the number of new incoming pairs in each period is drawn from the Poisson(r)

distribution, where r 2 N denotes the entry rate, and also equals the expected number

of entrants per period. Second, each pair independently draws the length of their so-

journ from the Geometric(d) distribution. The parameter d 2 R is the death rate, and

its reciprocal 1
d
is the expected sojourn length. We note that, due to the memoryless

property5 of the Geometric distribution, the amount of time a pair has waited in the

pool gives us no information about how much time they have until their death. Third,

we assume that patients do not discriminate between compatible kidneys. This last

assumption translates as patients having binary preferences over kidneys (i.e., they

receive utility 1 if they receive a transplant, and 0 otherwise), and is consistent with

other works in the literature, notably Roth et al. (2005).

In what follows we will explain the di↵erences between each environment.

2.2 ABO Environment

In the ABO environment, compatibility between two distinct pairs is based only on

blood-type compatibility.

Blood types are drawn independently for patients and donors from the correspond-

ing probability distribution in the US population6, but are adjusted by the following

5If X ⇠ Geometric(p), then P (X > t+ s|X > s) = P (X > t)
6Roughly O:49%, A:36%, B:11%, AB:4%
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assumption previously used in Ünver (2010): we allow for incompatibility between a

donor and their own patient. The reason for this additional assumption is that, if

there were truly no tissue type compatibilities, we would never observe pairs of type

(AB, ·), (·, O), or (A,A), (O,O), (B,B), and (AB,AB)7, since their donors would

be automatically compatible with their patients and they would never participate in

an exchange. Following Zenios et al. (2001), we assume that for such patients the

probability that a donor and their patient are incompatible is pc = 0.11. Arrival rates

are then adjusted accordingly, e.g., the arrival rate of (A,O) pair is proportional to

0.48⇥ 0.36⇥ 0.11 ⇡ 0.019.

2.3 RSU Environment

The RSU environment is named after a classic simulation model in used Roth et al.

(2007) and Saidman et al. (2006). Each pair is characterized by patient and donor

ABO blood types, current waiting time, and a calculated panel reactive antibody

(cPRA) level that represents the probability of a crossmatch with a random donor.8

The lower the cPRA, the higher the number of potentially compatible pairs.

The simulation process is as follows. First, we draw a pair in the same manner as

in the ABO environment. Next, we draw if the patient is a female (with probability

around 41%), and if so we also draw whether her donor is her husband (spouses

comprise about 49% of donors). Finally, we draw a cPRA level for the patient (Low:

70.1%, Medium: 20%, High: 9.9%). This cPRA level determines the probability that

they can receive a kidney from any donor, including their own: patients with low

cPRA have a 5% probability of positive crossmatch with a random donor; patients

7For shorthand, we will sometimes write “An (X, Z) pair” to mean “any pairs where the patient
has blood type X, and the donor has blood type Z”.

8The original Roth et al. (2007) paper called this simply PRA, and in real life there is an
important distinction between the two measures. However, for the purposes of a simulation model
this distinction is immaterial. We keep the name cPRA for consistency with OPTN environment
later.
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with medium cPRA have a 45% chance, and patients with high cPRA have a 90%

chance of a crossmatch. If a patient is blood or tissue-type incompatible with their

own donor, they enter the pool. In addition, if the patient is female and her husband

is the donor, the probability of positive crossmatch for low, medium and high cPRA

patients goes up to 28.75%, 58.75% and 92.25%. This last adjustment reflects the

fact that women tend to produce antibodies against their husbands’ antigens during

pregnancy.

Once in the pool, the pair immediately forms directed edges with the existing

pairs, again following the patient cPRA distribution. The resulting random graph is

akin to a Erdös-Rényi G(n, p) random graph where the probability of forming edges

is heterogeneous across di↵erent pair types.

2.4 OPTN Environment

In the OPTN environment, we use historical data collected by the United Network

for Organ Sharing (UNOS) data provided in the Standard Research and Analysis

(STAR) dataset. The STAR dataset contains information from all patients that were

ever registered to the kidney waiting list in the United States for the past three

decades, as well as from all living donors that actually participated in an transplant9.

From this original dataset, we excluded entries associated with the following:

• Patients that were registered for more than one organ (including those who were

simultaneously waiting for kidney and pancreas)

• Patients that were not waiting for their first kidney transplant

• Donors and patients with incomplete tissue-type profile information.

9To our knowledge, there is no centralized dataset containing information about registered donors
that never went to transplant.
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The resulting dataset contained 117813 patients and 9337 living donors. We call

this the “historical dataset”.

Patient and donor cPRA We added two additional variables to the original

dataset: a patient cPRA and a donor cPRA. While the patient cPRA is a measure

of patient tissue-type incompatibility with a random donor Cecka (2010), our donor

cPRA is a measure of the opposite direction – how frequently a donor is tissue-type

incompatible with a random patient.10 Both were computed empirically: for each

patient our dataset, we checked the how many donors exhibited antigens that are

unacceptable for the patient in any of the A, B, Bw, C, DR, DPB, DQ, and DQA

loci, and assigned this positive crossmatch probability as their patient cPRA11; for the

donors, we worked in the opposite direction by calculating the frequency of patients

who exhibited antibodies against their donor’s antigens, and that became their donor

cPRA. Figure 1 shows the distribution across the entire population.12

Artificial dataset We created an artificial dataset by randomly drawing patients

and living donors from the historical dataset and checking for blood-type compati-

bility, and tissue-type compatibility as explained above. Compatible pairs were dis-

carded. We iterated in this manner to construct a dataset of about one million

incompatible pairs. At every simulation period, a random number of pairs is drawn

from this dataset.

This artificial dataset is intended to approximate realistic kidney pools faced by

actual clearinghouses. However, let us remark that our donor pool consists only of

10We thank Itai Ashlagi for the suggestion of a donor cPRA.
11A genetic locus is a specific position on a chromossome. The loci above encodes a donor tissue

type.
12We should remark that we found a very di↵erent patient cPRA distribution than the one in the

OPTN dataset. This may have been because: in real life cPRA is computed using deceased donor
data, while we used living donor data; we may have used di↵erent HLA equivalence tables; OPTN
uses a more sophisticated model based on population genetics.Organ Procurement and Transplan-
tation Network (2013)
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Figure 1: Patient and donor cPRA
Computed from historical data. Our patient cPRA is the frequency of living donors that
exhibit antigens that are unacceptable to the patient. We also define a donor cPRA by
calculating the frequency of patients that have antibodies against the donors antigens.

persons that actually underwent a transplant. Therefore, our dataset’s donors may

be easier to match than a random donor from the entire pool of registered donors.

Even then, a large fraction of the patients is highly sensitized, which mirrors what

we see in KPD pools Ashlagi et al. (2013).

3 Methods

3.1 Objective and benchmarks

Objective In this work, we focus on maximizing the undiscounted cardinality of

matched pairs over T periods. To make comparison to our benchmarks easier, we

formulate the problem equivalently as maximizing the per-period average matching

size over T periods.
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Benchmarks Let M a set of available matchings at period t.

max
M⇢M

X

m2M

wmxm (1)

s.t.
X

m:v2m
xm  1 8v 2 V (2)

xm 2 {0, 1} 8m 2M (3)

where M is the set of available matchings13, wm is the cardinality of the exchange m,

and xm is a binary variable indicating whether or not the pair was selected. Constraint

3 ensures that each vertex is selected only once.

By an static matching problem at period t, we mean a version the problem above

where the only available matchings involve pairs v 2 Vt. By an o✏ine matching

problem between t and s, we mean a version of the same problem where involving

vertices v 2 [s
k=0Vt+k, and any matching m = (v1, · · · , vk) has the property that the

sojourns of the donating pair overlaps with the sojourn of the receiving pair.

We are interested in how our new methods perform relative to the following two

benchmarks.

Myopic At every period, the Myopic algorithm solves a static matching problem,

finds the maximal matching and clears it immediately. In doing so, it disregards all

observable characteristics of each pair, and in particular it ignores that some pairs

might be useful to keep certain pairs may be easier or harder to match. Therefore, it

may forgo the opportunity of matching a hard-to-match patient today, or postpone

an easy-to-match pair for later. In essence, this is an approximation to what kidney

exchanges currently do.

13By a small abuse of notation, we may write v 2 M to mean that v belongs to some exchange
that is an element of the matching M
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Optimal (OPT) This infeasible algorithm (henceforth OPT) solves the o✏ine

matching problem encompassing all periods between 1 and T . This completely does

away with the uncertainty arising from the temporal structure of the problem, hence

we know that this is the maximum achievable utility

Remark How much is there to be improved upon? In Figure 2, we compareMyopic

and OPT for a grid of di↵erent entry and death rates. These results show that

the performance gap between the two can be fairly large, in particular in sparser

environments like RSU and OPTN. We also note that the gap is narrower when: the

death rate is high, because if most pairs will die soon, dynamic considerations play a

smaller role; and when the entry rate is very large, because in a thicker market pairs

are able to encounter a suitable match more easily.

Figure 2: Comparing Myopic and OPT
Ratio of average per-period matched pairs for di↵erent entry and death rates, over 3000
periods (darker hues are better). Myopic has better chances of achieving performances
similar to OPT when the death rate is high (moving rightwards on the graphs), or when
entry rate is high (moving downwards on the graphs).
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4 Algorithms

We now present two novel methods to determine which patients should be matched.

Note that in this paper we will be working solely with pairwise matchings (i.e. match-

ings that only involve two-cycles), but the methods below are straightforwardly ex-

tensible to matchings involving larger cycles and chains.

4.1 Direct prediction

The main insight exploited by this method is that we can break down the dynamic

kidney problem into two parts. The first is determining which pairs should be matched

today, and the second is deciding how the selected pairs should be matched among

themselves. Note also, that the second part of the problem can be solved immediately

as an integer programming problem.

Using the idea above, the direct prediction method essentially reduces the dynamic

matching problem to a classification task: at each period, we aim to produce a binary

label for each node indicating whether is should be matched in this period (1) or left

for later (0). Selected nodes are then passed to a static solver that finds the maximal

matching among them. Once these nodes are cleared, time evolves to the next period.

The procedure is formalized in Algorithm 1, and also illustrated in Figure 3.
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Figure 3: Direct prediction method
One period of simulation using direct prediction methods to choose cycles. See Algorithm
1 for details.
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ALGORITHM 1: direct prediction Method
Data: Environment simulator object Env;
Integer programming solver object Solver;
Statistical method Classifier
Threshold thres;
Function direct prediction(Env, Solver, Classifier, thres):

// Retrieve node (and potentially also graph) data from current environment

X,E1, E2  Env.get data()
// Classifier predicts matching probability for each pair using data

prob  Classifier(X, E1, E2)
// Get index of pairs whose probability is higher than threshold

index  which(prob > thres)
// Find maximal matching restricted to this subset

chosen cycles  Solver.solve(Env, subset=index)
// Return chosen cycles to be cleared

return chosen cycles

Training the classifier In order to produce data to feed into our “classifier”, we

repeatedly created 1000-period simulation runs and solved them o✏ine using OPT.

Then, for every period t in simulation k, we stored: a matrix Xk

t
whose rows represent

each pairs observable characteristics; an additional matrices E1k
t

containing additional

graph-theoretical information such as several centrality measures (betweenness, in-

degree, out-degree, harmonic, closeness), in- and out-degrees, and average neighbor

degree; a conforming matrix E2k
t

containing the entry and death rates used in that

simulation; a binary vector yk
t
indicating which nodes OPT chose to match in period

t.

We repeated this procedure for each environment, and produced three artificial

data sets, each containing approximately 2 million observations. These data sets were

then fed to a series of predictive algorithms: penalized logistic regression (Wu et al.,

2009), random forest classifiers (Breiman, 2001), and gradient tree boosting classifiers

(Friedman, 2001).

19



www.manaraa.com

4.2 Multi-armed bandit methods

Since we are assuming access to the exact data-generating process, we can use sim-

ulations to choose the best action at each period t: choose a certain action (such as

removing a specific cycle); simulate the evolution of the kidney exchange pool until

some time horizon t + h; solve the o✏ine problem between t and t + h; evaluate the

performance of the chosen action under some criterion; repeat until we have evaluated

the performance of all actions; finally, take the best-performing action.

However, the approach outlined above often turns out to be impossible to execute

in practice, because simulations are computationally expensive and in practice we

cannot repeat them enough times get reliable estimates of the average performance

for each action choice, especially in large graphs. In order to solve this problem,

we will leverage theory and some algorithms from the multi-armed bandit (MAB)

literature described next.

In addition, we also need to specify exactly what is the criterion under which each

the performance of each action will be measured. In order to do that we will specify

a measure based on a new concept that we call pseudo-rewards.

Our procedure is illustrated in Figures 4 and 5.

At the beginning of the period t, the agent receives a set of cycles C that are

available to be cleared.14 If C is empty, nothing happens and we move to the next

period. Otherwise, the agent then picks a cycle c 2 C and simulates the future,

including new entries and deaths, up to a horizon h. Next, OPT is run twice, once

normally, and once with the additional constraint that c be removed today. The size of

the resulting matching in these two scenarios is compared. Naturally, the constrained

version of OPT cannot achieve anything better than its unconstrained counterpart, but

it might get to be equal. If it is, the agent receives a pseudo-reward of one, otherwise

14Here we talk about cycles for simplicity, and because our application only uses two-cycles. In
the general case, the agent may receive an arbitrary set M of available exchanges.
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it receives zero.

This process is repeated: at each iteration `, a cycle c` is chosen and its pseudo-

reward rc,` is revealed. When a preset computational budget of L(|C|) iterations is

hit, the agent then analyses the whole history of cycle choices and pseudo-rewards

Ht = {(c`, rc`)}L`=1, and decides whether to match one of the cycles or move on to the

next period. If a cycle c is chosen it is immediately cleared, however the environment

does not evolve to the next period yet. Instead, the history Ht is discarded the

procedure is repeated again with a reduced set of actions C 0 ⇢ C that produces a

new history H 0
t
and so on, until either there are no more available choices or the

agent decides to allow the environment to move on to time t+ 1. When that at last

happens, entries and deaths are revealed, the agent receives a new set of cycles, and

the process begins anew. All past information is ignored.

An important detail was left out of the explanation above: how does the agent

chooses the next cycle to test and simulate at each iteration `? To answer that, we

will take a detour to give a self-contained introduction about multi-armed bandit

algorithms.

Interlude: Multi-armed Bandit Algorithms Let c⇤ be a cycle that maximizes

expected pseudo-rewards during one round of the algorithm:

c⇤
`
2 argmax

c

E[rc,`]

Also, let regret be defined as the di↵erence between expected reward of the optimal

choice c⇤ and its own selected choice c`.

�` := E[rc⇤,`]� E[rc,`]

A multi-armed bandit (MAB) algorithm is an adaptive exploration procedure that
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seeks to minimize the cumulative regret over L rounds. A good MAB algorithm

will act so as to balance exploration (trying out di↵erent choices to get high-quality

estimates of their rewards) and exploitation (using out better choices more often to

increase total rewards), and produce regret that grows at an asymptotically slow

rate. Here, we experiment with two common bandits algorithms, namely UCB1,

and Thompson sampling. The literature on bandit algorithms is extensive and an

in-depth explanation is outside the score of this paper. However, for context in the

next paragraphs we provide some intuition for how and why they work.

UCB1 The Upper Confidence Bound 1 prescribes that at each period of repeat the

following two steps.

1. Construct a certain confidence interval around the average reward estimate for

each arm.

2. Choose the action with the highest confidence upper bound.

This heuristic is commonly named optimism in the face of uncertainty (Kaelbling

et al., 1996), because at every period we are choosing the action with the “largest

plausible” average reward estimate (Lattimore and Szepesvari, 2018, Ch. 3). The

intuition is the following: if the agent is correct in choosing the optimistic action,

then they receive zero regret; if the agent is incorrect, then they will thereafter review

their estimates so as to decrease the upper bound for that action and avoid it in the

future.

Auer et al. (2002) proved that, in the absence of further information about the

distribution of rewards, by appropriately constructing the confidence interval around

each reward average we are able to attain an optimal logarithmic cumulative regret
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rate. Their proposed confidence interval for action c in round ` has the form

UCB[`, c] = µ̂c,`�1 + 

s
log(`)

nc,`�1
(4)

where ` is the current round of the bandit algorithm, µ̂c,`�1 is the running reward

estimate for action c, and nc,`�1 is the number of times that the action c has been

selected before round `, and  is a constant whose optimal value is 2 when rewards

are binary.

It is instructive to remark that Equation 4 is increasing in µ̂c,` – so that actions

with higher expected reward will be naturally chosen more often, leading to exploita-

tion – but it is also decreasing in nc,`�1 – making other actions more likely to be

chosen in the future, leading to more exploration.

Thompson sampling Also known as posterior sampling, this algorithm reformu-

lates the bandit problem in a Bayesian framework. The agent begins with a prior

distribution P (µc) for each action c. This initial prior is updated as the history of

actions and rewards accumulates. Like UCB1, the entire algorithm is explained in

few steps:

1. Compute and sample from the posterior distribution of average rewards

µ̃c ⇠ P (µc|H`�1) 8c

2. Choose the action with maximal reward among the samples.

c` = argmax
c

µc

This simple algorithm can be shown to be optimal, in terms of attaining a asymp-

totically logarithmic lower bound on Bayesian regret (Slivkins, 2018). However, more
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surprisingly, Kaufmann et al. (2012) showed that it also enjoys good frequentist prop-

erties, and under certain conditions performs no worse than UCB1 in terms of fre-

quentist regret. Moreover, Thompson sampling algorithm can be generalized in a

number of ways, some of which we discuss in section 6.

ALGORITHM 2: multi armed bandit Method
Data: Environment simulator object Env;
Integer programming solver object Solver;
Threshold thres; Horizon h;
Function multi armed bandit(Env, Solver, Bandit, thres, h):

done  Falsewhilenot at end of this documentdo
// Select a cycle or a null token

c  choose cycle(Env,h,thres)
// Check if a cycle was indeed chosen

if c is not NULL then
// Remove cycle and continue search

Env.remove(c)
else

// Just terminate search

done  Trueend

end
// Return environment with removed cycles

return Env

ALGORITHM 3: Function get pseudo reward
Data: Cycle c; Horizon h;
Lists pseudo-reward statistics Avg, Std;
Environment simulator object Env;
Oracle solver object OPT;
Function get pseudo reward(Env, c, Avg, Std, h):

// Simulate up to horizon h and find optimal matching

Env.simulate(h)
r1  OPT.solve(Env)
// Remove cycle c, find constrained optimal matching

Env.remove(c)
r2  OPT.solve(Env)
// Return 1 if rewards are equal, 0 otherwise

return r1 == r2

What are pseudo-rewards? As we match and clear out a cycle c today, we forgo

the opportunity of using any future cycles involving the nodes in c. However, because
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ALGORITHM 4: Function choose cycle

Data: Horizon h; Number of iterations L; Threshold thres;
Environment simulator object Env; Multi-armed bandit algorithm object MAB;
Function choose cycle(Env, h, thres):

// Initialize lists of current pseudo-reward statistics

C  Env.get available cycles()
Avg  zeros(length(C))
Std  zeros(length(C))
// Begin iterations

for i 0 to L do
// Bandit algorithm chooses next cycle to test given statistics

c  MAB.pull(C, Avg, Std)
// Compute pseudo reward for this cycle and update statistics

r  get pseudo reward(Env, c, Avg, Std, h)
Avg  update running average(Avg, r)
Std  update running std(Std, r)

end
// Bandit algorithm chooses best cycle given statistics

c best  MAB.choose(C, Avg, Std)
// Return best cycle, unless none of the pseudo-reward averages are above a certain threshold

if All(Avg  thres) then
return NULL

else
return c

end
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Figure 4: Multi-armed bandit methods
One period of simulation using multi-armed bandit methods to choose cycles.
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Figure 5: Function get pseudo reward
Multi-armed bandits evaluate if a cycle should be cleared by checking if there is a high
chance that the cycle will be used in the future. Such cycles get a lower reward, and are
left for later.

there may be multiple optimal matchings, sometimes the cycles that become unavail-

able due to the removal of the nodes in c do not matter, in the sense that we can

still find a matching of the same cardinality without them. In other words, we pay

no price for removing these future cycles.

The pseudo-reward associated with cycle c is a random variable whose expectation

is the probability that removing a cycle today will not negatively impact the optimal

matching size between t and t+h. The higher this number, the more confident we are

that clearing c out today will not give us trouble in the future. A concrete example

of this idea in shown in Figure 6.

Pseudo-rewards are a natural way for us to control which patients should be

matched today. Pairs that are easy to match will likely belong to many cycles, so by

removing them we will be incurring a large cost in terms of future cycles that will

become unavailable. But that means that the pseudo-reward associated with cycles

that involve them will be lower, making them less attractive. On the other hand,

patients that are harder to match will not participate many future exchange, so the

price we pay for matching them today is low, and their average pseudo-reward is high.
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5 Results

5.1 Direct prediction methods

Table 1 shows the performance results for direct prediction methods as estimators,

i.e., how accurately they are able to predict whether a node should be matched or

not. We see that while overall accuracy can be relatively high at 70-80%, precision

(defined as the ratio between true positives and both true and false positives) is

low even for simpler environments like ABO, indicating that the models are over-

predicting matchings. Also, augmenting the data with information about the graph

has little discernible e↵ect under any of the performance criteria. This suggests that

there might be gains from using other algorithms that make better use of information

about the compatibility graph.

In order to empirically evaluate the performance of our proposed direct prediction

method, we proceed as follow. First, we simulate a dynamic kidney pool according

the configuration prescribed by each of our environments, and applied Algorithm 1

at each time step, following the outline on Figure 3. Next, using the same random

seed, we simulated each environment and solved it again using Myopic in place of

our method. Finally, we computed the average number of matched patients in 1000

periods for each algorithm, and compared the two.

This process was repeated several times for: each classifier (logistic regression,

gradient tree boosting, random forests), each environment (ABO, RSU , OPTN)

and nine entry and death rate combinations. The threshold variable was fixed at

thres = 1
2 everywhere.

The result is shown on Figures 7, 8 and 9, where we show the average perfor-

mance ratio computed as above for each combination of environment, algorithm and

entry/death rate configuration. (See also accompanying tables 2-7 in the Appendix).

Unfortunately, as we predicted in the beginning of the section, the poor predictive
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Figure 7: Performance of gradient boosting in direct prediction method
Ratio of average matched patients against Myopic. Simulations ran for 1000 periods.
Lower row is when data was augmented with information about graph.

performance of the algorithms translates into poor performance as the classifier in

our direct prediction method. Random forests, in particular, have the lowest rate of

accuracy (Table 1), and also exhibit the lowest performance in the direct prediction

method.

5.2 Multi-armed bandit methods

We evaluated the performance of our multi-armed bandit in an analogous manner to

the direct prediction method described in the previous section.

The average ratio between our method and Myopic is shown on Figures 10 and

11 (See also Tables 9-11). The results suggest that, at least for the entry and death

rate combinations we experimented on, the multi-armed bandit method uniformly

dominates Myopic in terms of average number of matched patients per period.

In sparser environments (RSU and OPTN), for particular entry and death rate

combinations, our method is able to improve uponMyopic, sometimes over 4%. This

reflects an earlier observation we did when analyzing Figure 2: gains from taking dy-
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Figure 8: Performance of logistic regression in direct prediction method
Similar to gradient boosting shown in Figure 7, logistic regression is only able to perform
better than Myopic when the death rate is large.

Figure 9: Performance of random forests in direct prediction method
Random Forests’s poor performance is likely due to its low accuracy, as shown on Table 1.
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Figure 10: Performance of multi-armed bandit method in ABO and RSU
environments
Average percent improvement by the multi-armed bandit method over Myopic.
See also Tables 9 and 10.

namic consideration into account are larger in situations of moderate sparsity, because

that is whereMyopic forces the pool to be too thin, and drives the performance away

from optimality.

Aside: Comparison with chunk algorithms Recently there has been some

interest algorithms that apply the Myopic algorithm (or some appropriate variation

of it) at every k number of periods. A notable example of this is Ashlagi et al. (2013),

who propose the following dynamic kidney model: at each period, only one pair enters

the pool; this pair is of one of two types; there are no deaths. For this model, derive

a greedy algorithm called Chunk Matching (CM), which finds and clear the maximal

matching each time a given number of each type has joined the pool.

We cannot compare Ashlagi et al. (2013)’s method directly to ours, since our

models are slightly di↵erent. However, we could still consider the following thought
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Figure 11: Performance of multi-armed bandit method in OPTN environment
Average percent improvement by the multi-armed bandit method over Myopic.
See also Table 11.

experiment: if we allowed only one pair per period, but ran Myopic every � periods,

would we see an increase in gains?

It is possible to to give an approximate answer to this thought experiment using

the results presented in this section. The reason is this. In our original model, �

pairs enter per period and each pair has a probability 1� d of surviving to the next

period. This is roughly equivalent to a model where we subdivide the period into �

sub-period, allow one pair to enter per period, and each pair has a probability (1�d) 1
�

of surviving to the next sub-period.15 Moreover, running Myopic at every period in

the original model is approximately the same as waiting for � periods in the modified

model with deflated death rates.

We perform this comparison for the OPTN model, and present them on table 13.

As we readily sees, our algorithm would still dominate the chunk-Myopic algorithm

described above.
15This is exact for pairs that are already in the pool at time t, since they will survive with

probability ((1� d)
1
� )� = 1� d. However, a pair that arrives, e.g. in the second sub-period between

t and t+ 1 will reach t+ 1 with slightly higher probability, since it must survive for fewer periods.
We will ignore this in our rough approximation.
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6 Extensions and future work

Our methods suggest a variety of extensions.

Improving the direct prediction method First, the relatively weak performance

of our direct prediction method could be improved in two ways. First, by improv-

ing our ability to use information about graph structure when predicting if a node

should be matched or not. This could be done using new statistical methods that are

applicable to non-euclidean spaces (Shuman et al., 2013). In particular, recent years

have seen the emergence of interest in generalizing neural networks to model with

structured datasets such as graphs. A promising approach is the one taken by Kipf

and Welling (2016), who build on earlier work by De↵errard et al. (2016) to derive a

very simple recurrence relation for graph embedding:

H`+1 = �((At + I)H`W `) with H0 = Xt (5)

where Xt is the matrix of observable characteristics, W ` is a matrix of coe�cients,

At is the adjacency matrix associated with the kidney exchange pool at t, I is a

comformable identity matrix, and � is a nonlinear function such as the inverse logistic

CDF or ReLU16. The authors prove that this can be interpreted as a di↵erentiable

version of the Weisfeiler-Lehman algorithm for graph isomorphism tests. For us, it is

an especially convenient method because the input graphs need not be the same size

throughout the analysis.

Second, when the direct prediction method computes a selection probability for

each pair, it does not consider correlations between multiple pairs in the same kidney

exchange pool. However, intuition suggests that it should be often the case that pairs

in the same exchange have similar probabilities of being matched. In order to rectify

16
ReLU(x) = max(x, 0)
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this shortcoming of our approach, we would like to train our statistical estimator

using the sequence-to-sequence (seq2seq) models of recurrent neural networks studied

by Sutskever et al. (2014), Kalchbrenner and Blunsom (2013) and Cho et al. (2014).

Sequence-to-sequence models are a relatively new paradigm that allows for variable

length inputs (needed here because di↵erent pools have di↵erent sizes), and correlated

outcomes of variable length. (See also (LeCun et al., 2015) for an overview)

Improving the MAB algorithm Our multi-armed bandit method can be quite

computationally intensive, requiring multiple simulations per exchange. When the

exchange pool or the set of available actions is large, it may be di�cult to scale. It is

important to consider extensions to deal with this issue.

First, note how our MAB algorithm only makes use of simulations to select ex-

change that will be clear, and it makes no use explicit use of information about pairs

characteristics, or about the structure of the graph. However, it is intuitive that

pairs endowed with similar characteristics should have similar probabilities of being

matched. In terms of the model discussed in this paper, this would translate into

correlated pseudo-rewards among pairs, where the strength of the correlation should

be proportional to how similar two pairs are deemed to be. The generalized versions

of the Thompson Sampling algorithm (See Russo et al. (2017)) are able to deal with

this, and could be employed.

Other extensions We would like to experiment with di↵erent objective functions,

since, in reality, di↵erent exchanges may have di↵erent levels of desirability or priority.

For example, it is common for pediatric patients and previous organ donors receive

higher priority, as do ABDR0 exchanges involving “perfectly matched” patients and

donors.

Another important avenue for research would be to develop a theoretical basis

for the methods shown here. For example, we learned that one important statistic is
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the average ”pseudo-reward” (i.e., the probability of a certain cycle not being used

in future matchings). We believe that it may be possible to compute this quantity

analytically in a simplified model with fewer types, which would then render the

simulations unnecessary and possible help decrease the gap between Myopic and

OPT by a signficant amount.

7 Conclusion

In this paper, we examined two novel algorithms for dynamic matching in a discrete-

time model of kidney exchange: a direct prediction method that tries to predict which

pair should be matched at each period; and a multi-armed bandit method, that uses

simulations to score available exchanges in terms of their desirability. We evaluate

these methods them using simulations under a variety of di↵erent settings, and com-

pared them in terms of average number of matched pairs per period to a Myopic

algorithm that finds and immediately clears the maximal matching at each period.

We find that our multi-armed bandit method is able to uniformly dominate My-

opic in all our simulation settings, including one where we draw pairs from the

historical list of patients and donors that have undergone transplants in the United

States.

Disclaimer
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8 Appendix
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Boosting Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3 5 1.791 0.019 1.812 0.020 -0.021 0.036 -1.173 13
8 2.324 0.018 2.301 0.020 0.022 0.027 0.958 15
10 2.386 0.016 2.349 0.018 0.037 0.000 1.572 16

5 5 2.549 0.024 2.621 0.026 -0.072 0.000 -2.746 10
8 2.870 0.018 2.880 0.020 -0.010 0.196 -0.356 16
10 2.948 0.018 2.948 0.020 0.000 0.976 0.010 15

7 5 3.230 0.026 3.327 0.027 -0.097 0.000 -2.903 11
8 3.531 0.026 3.575 0.028 -0.045 0.001 -1.248 9
10 3.512 0.026 3.555 0.028 -0.043 0.000 -1.209 9

OPTN 3 5 2.236 0.023 2.189 0.024 0.048 0.000 2.179 10
8 2.314 0.016 2.259 0.017 0.055 0.000 2.431 19
10 2.348 0.017 2.322 0.018 0.026 0.007 1.112 18

5 5 2.347 0.026 2.515 0.027 -0.168 0.000 -6.679 9
8 2.369 0.018 2.500 0.018 -0.130 0.000 -5.210 19
10 2.393 0.017 2.519 0.018 -0.126 0.000 -5.008 21

7 5 3.043 0.028 3.373 0.030 -0.330 0.000 -9.791 10
8 2.900 0.030 3.192 0.032 -0.292 0.000 -9.148 8
10 2.860 0.030 3.141 0.032 -0.281 0.000 -8.957 8

RSU 3 5 2.380 0.025 2.417 0.025 -0.038 0.000 -1.553 10
8 2.499 0.019 2.503 0.019 -0.004 0.552 -0.155 18
10 2.640 0.020 2.625 0.021 0.015 0.034 0.570 16

5 5 4.193 0.031 4.247 0.031 -0.054 0.000 -1.281 12
8 4.134 0.027 4.140 0.027 -0.007 0.252 -0.163 15
10 4.209 0.025 4.197 0.025 0.013 0.067 0.299 17

7 5 5.987 0.039 6.037 0.040 -0.050 0.000 -0.836 10
8 5.794 0.037 5.809 0.037 -0.015 0.068 -0.260 11
10 5.924 0.043 5.918 0.043 0.006 0.334 0.097 8

Table 2: Performance of direct prediction method with gradient boosting
For selected entry and death rates.
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Boosting Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3 5 1.827 0.023 1.874 0.024 -0.047 0.004 -2.489 9
8 2.211 0.016 2.179 0.017 0.032 0.001 1.474 19
10 2.292 0.016 2.254 0.017 0.039 0.000 1.713 18

5 5 2.643 0.026 2.757 0.029 -0.114 0.000 -4.131 8
8 2.823 0.018 2.870 0.020 -0.046 0.000 -1.610 16
10 2.915 0.020 2.914 0.021 0.000 0.937 0.011 13

7 5 3.356 0.030 3.534 0.033 -0.178 0.000 -5.039 7
8 3.377 0.029 3.537 0.031 -0.160 0.000 -4.537 8
10 3.432 0.028 3.516 0.030 -0.084 0.000 -2.398 8

OPTN 3 5 2.131 0.023 2.127 0.024 0.004 0.695 0.192 10
8 2.455 0.016 2.380 0.017 0.076 0.000 3.175 17
10 2.464 0.015 2.384 0.017 0.080 0.000 3.345 17

5 5 2.188 0.023 2.416 0.025 -0.228 0.000 -9.437 10
8 2.812 0.017 2.825 0.019 -0.014 0.085 -0.485 19
10 2.881 0.017 2.848 0.018 0.033 0.001 1.143 18

7 5 2.930 0.026 3.370 0.029 -0.440 0.000 -13.054 11
8 3.139 0.025 3.358 0.028 -0.220 0.000 -6.543 11
10 3.394 0.025 3.469 0.027 -0.075 0.000 -2.162 11

RSU 3 5 2.380 0.025 2.451 0.025 -0.071 0.000 -2.913 10
8 2.547 0.022 2.574 0.022 -0.027 0.000 -1.044 14
10 2.625 0.020 2.634 0.020 -0.009 0.148 -0.348 17

5 5 4.183 0.032 4.269 0.033 -0.086 0.000 -2.021 10
8 4.179 0.026 4.211 0.027 -0.032 0.000 -0.760 15
10 4.164 0.025 4.183 0.025 -0.019 0.001 -0.449 16

7 5 5.992 0.038 6.103 0.038 -0.111 0.000 -1.813 11
8 5.832 0.036 5.870 0.036 -0.039 0.000 -0.660 12
10 5.914 0.037 5.939 0.037 -0.024 0.005 -0.406 11

Table 3: Performance of direct prediction method with gradient boosting
Using information about graph.
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Logistic Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3 5 1.035 0.016 1.185 0.018 -0.150 0.000 -12.660 10
8 1.479 0.015 1.530 0.015 -0.051 0.000 -3.325 19
10 1.798 0.018 1.809 0.018 -0.011 0.158 -0.594 16

5 5 1.774 0.024 2.029 0.026 -0.255 0.000 -12.556 8
8 1.970 0.027 2.071 0.028 -0.101 0.000 -4.873 7
10 2.275 0.021 2.328 0.021 -0.053 0.000 -2.284 13

7 5 2.536 0.033 2.908 0.036 -0.372 0.000 -12.792 6
8 2.716 0.025 2.865 0.025 -0.150 0.000 -5.219 11
10 2.859 0.029 2.942 0.030 -0.083 0.000 -2.808 8

OPTN 3 5 1.933 0.022 1.972 0.022 -0.039 0.004 -1.978 11
8 2.270 0.017 2.232 0.019 0.038 0.000 1.712 17
10 2.369 0.016 2.330 0.017 0.039 0.000 1.678 17

5 5 2.717 0.027 2.795 0.029 -0.078 0.000 -2.779 9
8 2.893 0.019 2.881 0.019 0.013 0.027 0.442 18
10 2.922 0.019 2.879 0.020 0.043 0.000 1.490 15

7 5 3.470 0.028 3.608 0.029 -0.138 0.000 -3.832 11
8 3.602 0.025 3.640 0.026 -0.038 0.000 -1.049 12
10 3.611 0.026 3.606 0.027 0.005 0.470 0.148 11

RSU 3 5 2.037 0.025 2.434 0.027 -0.397 0.000 -16.302 9
8 2.221 0.034 2.331 0.035 -0.109 0.000 -4.688 5
10 2.355 0.019 2.399 0.019 -0.044 0.000 -1.825 17

5 5 3.636 0.030 4.249 0.033 -0.613 0.000 -14.429 10
8 3.886 0.028 4.080 0.028 -0.194 0.000 -4.752 14
10 3.966 0.026 4.031 0.025 -0.066 0.000 -1.634 16

7 5 5.164 0.039 6.040 0.042 -0.877 0.000 -14.512 9
8 5.635 0.038 5.875 0.039 -0.240 0.000 -4.080 10
10 5.606 0.038 5.706 0.038 -0.100 0.000 -1.751 10

Table 4: Performance of direct prediction method with logistic regression
Not using information about graph.
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Logistic Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3 5 1.063 0.018 1.196 0.019 -0.133 0.000 -11.114 9
8 1.350 0.017 1.405 0.017 -0.055 0.000 -3.891 14
10 1.638 0.019 1.658 0.019 -0.020 0.001 -1.186 14

5 5 1.894 0.023 2.047 0.024 -0.153 0.000 -7.452 9
8 2.170 0.019 2.224 0.019 -0.054 0.000 -2.445 15
10 2.430 0.019 2.439 0.019 -0.010 0.109 -0.404 17

7 5 2.745 0.034 2.963 0.035 -0.218 0.000 -7.370 6
8 2.991 0.032 3.033 0.032 -0.043 0.001 -1.403 7
10 3.257 0.028 3.265 0.029 -0.008 0.290 -0.235 9

OPTN 3 5 1.803 0.021 1.846 0.022 -0.043 0.025 -2.313 11
8 2.302 0.018 2.263 0.019 0.039 0.000 1.733 16
10 2.362 0.016 2.304 0.018 0.058 0.000 2.519 16

5 5 2.519 0.027 2.642 0.028 -0.123 0.000 -4.664 9
8 2.925 0.019 2.896 0.020 0.028 0.003 0.984 16
10 2.956 0.018 2.908 0.019 0.048 0.000 1.643 18

7 5 3.192 0.027 3.459 0.029 -0.267 0.000 -7.716 11
8 3.604 0.028 3.604 0.029 -0.000 0.940 -0.009 10
10 3.654 0.024 3.617 0.025 0.037 0.000 1.014 13

RSU 3 5 2.062 0.023 2.424 0.024 -0.362 0.000 -14.916 11
8 2.164 0.021 2.296 0.021 -0.132 0.000 -5.760 14
10 2.284 0.021 2.348 0.021 -0.065 0.000 -2.762 15

5 5 3.660 0.035 4.215 0.037 -0.555 0.000 -13.169 8
8 3.876 0.028 4.061 0.027 -0.186 0.000 -4.572 15
10 3.883 0.026 3.979 0.025 -0.096 0.000 -2.424 17

7 5 5.177 0.054 5.992 0.062 -0.815 0.000 -13.596 4
8 5.638 0.046 5.835 0.044 -0.197 0.000 -3.376 8
10 5.688 0.043 5.787 0.041 -0.100 0.000 -1.727 9

Table 5: Performance of direct prediction method with logistic regression
Using information about graph.
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Forest Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3 5 1.173 0.019 1.240 0.020 -0.067 0.000 -5.417 8
8 1.331 0.016 1.373 0.017 -0.042 0.000 -3.082 14
10 1.513 0.017 1.539 0.017 -0.026 0.002 -1.672 15

5 5 1.952 0.025 2.049 0.026 -0.097 0.000 -4.733 8
8 2.223 0.019 2.281 0.020 -0.059 0.000 -2.573 15
10 2.366 0.018 2.396 0.019 -0.030 0.000 -1.240 17

7 5 2.805 0.030 2.913 0.031 -0.108 0.000 -3.715 8
8 2.888 0.029 2.978 0.030 -0.089 0.000 -3.002 8
10 2.990 0.025 3.049 0.026 -0.059 0.000 -1.936 11

OPTN 3 5 0.962 0.018 1.256 0.020 -0.293 0.000 -23.349 8
8 0.815 0.011 1.169 0.014 -0.354 0.000 -30.298 19
10 0.775 0.012 1.168 0.014 -0.394 0.000 -33.693 17

5 5 1.566 0.025 2.185 0.030 -0.619 0.000 -28.324 7
8 1.269 0.014 1.969 0.018 -0.701 0.000 -35.585 17
10 1.160 0.014 1.895 0.018 -0.735 0.000 -38.766 16

7 5 2.322 0.025 3.275 0.029 -0.953 0.000 -29.110 10
8 1.924 0.024 2.993 0.029 -1.069 0.000 -35.731 9
10 1.736 0.024 2.807 0.030 -1.071 0.000 -38.162 8

RSU 3 5 2.423 0.026 2.465 0.027 -0.043 0.000 -1.728 9
8 2.670 0.022 2.664 0.022 0.006 0.368 0.213 14
10 2.752 0.020 2.733 0.020 0.019 0.002 0.685 17

5 5 4.175 0.037 4.214 0.037 -0.039 0.008 -0.927 8
8 4.163 0.025 4.172 0.026 -0.009 0.145 -0.213 16
10 4.288 0.027 4.283 0.027 0.005 0.499 0.125 15

7 5 5.996 0.052 6.042 0.052 -0.047 0.013 -0.772 6
8 5.915 0.041 5.909 0.041 0.006 0.455 0.102 9
10 5.827 0.036 5.820 0.036 0.007 0.481 0.121 11

Table 6: Performance of direct prediction method with random forests
Not using information about graph.
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Forest Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3 5 0.953 0.017 1.181 0.018 -0.228 0.000 -19.284 9
8 0.934 0.013 1.152 0.014 -0.217 0.000 -18.874 15
10 0.916 0.013 1.118 0.014 -0.202 0.000 -18.084 15

5 5 1.719 0.025 2.066 0.027 -0.347 0.000 -16.805 7
8 1.645 0.017 1.938 0.018 -0.293 0.000 -15.105 16
10 1.673 0.018 1.940 0.019 -0.268 0.000 -13.796 14

7 5 2.385 0.059 2.883 0.061 -0.497 0.049 -17.253 2
8 2.405 0.031 2.811 0.032 -0.406 0.000 -14.460 7
10 2.424 0.027 2.819 0.028 -0.394 0.000 -13.983 9

OPTN 3 5 0.517 0.012 1.180 0.018 -0.663 0.000 -56.214 10
8 0.552 0.010 1.087 0.014 -0.535 0.000 -49.181 17
10 0.619 0.010 1.111 0.013 -0.491 0.000 -44.245 18

5 5 0.946 0.018 2.161 0.027 -1.215 0.000 -56.221 8
8 0.909 0.012 1.962 0.018 -1.053 0.000 -53.661 17
10 0.963 0.012 1.873 0.017 -0.910 0.000 -48.590 17

7 5 2.173 0.028 3.313 0.032 -1.141 0.000 -34.424 9
8 1.314 0.017 2.993 0.026 -1.679 0.000 -56.088 12
10 1.344 0.017 2.822 0.025 -1.479 0.000 -52.392 12

RSU 3 5 2.102 0.025 2.372 0.027 -0.270 0.000 -11.369 9
8 2.074 0.019 2.304 0.020 -0.229 0.000 -9.957 15
10 2.087 0.018 2.301 0.019 -0.215 0.000 -9.322 16

5 5 3.859 0.032 4.243 0.033 -0.385 0.000 -9.064 10
8 3.744 0.025 4.070 0.026 -0.325 0.000 -7.998 15
10 3.666 0.020 3.976 0.021 -0.311 0.000 -7.815 23

7 5 5.564 0.052 6.027 0.051 -0.464 0.000 -7.693 6
8 5.455 0.041 5.821 0.043 -0.365 0.000 -6.277 8
10 5.427 0.042 5.762 0.043 -0.335 0.000 -5.816 8

Table 7: Performance of direct prediction method with random forests
Using information about graph.
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UCB1 Myopic Di↵erence p-value Ratio (%) N
Mean Std Error Mean Std Error

Environ. Entry Death

ABO 3.0 5.0 1.156 0.021 1.142 0.021 0.014 0.013 1.263 5
8.0 1.121 0.026 1.116 0.026 0.005 0.369 0.418 3
10.0 1.095 0.020 1.079 0.020 0.016 0.003 1.484 5

5.0 5.0 2.035 0.009 2.017 0.009 0.018 0.000 0.875 63
8.0 2.021 0.031 1.996 0.031 0.025 0.004 1.237 4
10.0 1.967 0.025 1.945 0.025 0.022 0.001 1.133 6

7.0 5.0 2.908 0.050 2.894 0.050 0.014 0.048 0.497 8
8.0 2.831 0.027 2.805 0.026 0.026 0.000 0.911 12
10.0 2.801 0.033 2.771 0.033 0.030 0.005 1.088 5

OPTN 3.0 5.0 1.196 0.020 1.160 0.020 0.036 0.000 3.107 6
8.0 1.063 0.027 1.043 0.027 0.020 0.023 1.919 3
10.0 0.998 0.020 0.971 0.019 0.027 0.002 2.763 5

5.0 5.0 2.260 0.039 2.175 0.038 0.085 0.001 3.917 4
8.0 1.981 0.025 1.914 0.025 0.066 0.000 3.469 6
10.0 1.868 0.030 1.825 0.030 0.043 0.012 2.361 4

7.0 5.0 3.398 0.020 3.264 0.020 0.134 0.000 4.106 34
8.0 3.071 0.026 2.969 0.026 0.102 0.000 3.447 9
10.0 2.880 0.037 2.790 0.037 0.090 0.000 3.225 5

RSU 3.0 5.0 2.477 0.026 2.398 0.026 0.078 0.000 3.268 8
8.0 2.380 0.039 2.310 0.038 0.069 0.005 3.004 3
10.0 2.268 0.029 2.201 0.029 0.067 0.000 3.057 5

5.0 5.0 4.330 0.025 4.201 0.025 0.128 0.000 3.056 40
8.0 4.190 0.040 4.072 0.040 0.118 0.000 2.900 8
10.0 4.084 0.011 3.973 0.011 0.112 0.000 2.815 64

7.0 5.0 5.519 0.370 5.370 0.399 0.148 nan 2.759 1
8.0 6.041 0.044 5.870 0.044 0.171 0.000 2.906 19
10.0 5.904 0.023 5.742 0.023 0.162 0.000 2.824 53

Table 8: Multi-armed bandit algorithm UCB1
Environ is the environment used for simulation. Entry and Death are the Poisson
entry rate of entry and the the Geometric rate of departure (times 100), respectively.
Mean and Std refers to the average number of matched patients over 1000 periods.
Difference and Ratio compare the average improvement between the algorithm and
Myopic. N is the number of 1000-period simulations that used that particular
configuration. Tables for other bandits are similar, and can be found in the online
supplement that will be available online.
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Algo. Entry Death MAB Myopic Di↵erence p-value Improvement (%) N
Mean Std Error Mean Std Error

Thompson 3 0.010 1.664 0.020 1.593 0.019 0.072 < 10�3 4.517 10
Thompson 3 0.030 1.347 0.010 1.297 0.010 0.050 < 10�3 3.816 24
Thompson 3 0.050 1.198 0.014 1.162 0.014 0.036 < 10�3 3.098 6
Thompson 3 0.070 1.078 0.003 1.052 0.003 0.026 < 10�3 2.434 283
Thompson 3 0.090 1.002 0.002 0.981 0.002 0.021 < 10�3 2.124 361
Thompson 3 0.100 0.999 0.018 0.979 0.018 0.021 0.031 2.112 3
Thompson 4 0.010 2.280 0.032 2.174 0.031 0.107 < 10�3 4.900 6
Thompson 4 0.030 1.894 0.014 1.822 0.014 0.072 < 10�3 3.928 18
Thompson 4 0.050 1.721 0.015 1.668 0.015 0.053 < 10�3 3.165 15
Thompson 4 0.070 1.570 0.003 1.527 0.003 0.043 < 10�3 2.812 260
Thompson 4 0.090 1.466 0.003 1.429 0.002 0.036 < 10�3 2.552 465
Thompson 4 0.100 1.416 0.004 1.382 0.004 0.034 < 10�3 2.437 211
Thompson 5 0.010 2.879 0.051 2.756 0.050 0.123 0.002 4.475 4
Thompson 5 0.030 2.495 0.021 2.402 0.020 0.092 < 10�3 3.850 13
Thompson 5 0.050 2.237 0.034 2.163 0.034 0.074 0.066 3.406 4
Thompson 5 0.070 2.075 0.010 2.009 0.010 0.066 < 10�3 3.275 38
Thompson 5 0.090 1.930 0.014 1.875 0.014 0.055 < 10�3 2.928 20
Thompson 5 0.100 1.920 0.018 1.867 0.017 0.053 < 10�3 2.838 6
Thompson 6 0.010 3.677 0.091 3.472 0.085 0.206 0.029 5.920 3
Thompson 6 0.030 3.079 0.028 2.962 0.027 0.117 < 10�3 3.955 9
Thompson 6 0.050 2.769 0.027 2.675 0.026 0.094 < 10�3 3.514 8
Thompson 6 0.070 2.623 0.011 2.537 0.011 0.086 < 10�3 3.387 40
Thompson 6 0.090 2.450 0.010 2.379 0.010 0.071 < 10�3 2.976 48
Thompson 6 0.100 2.357 0.018 2.295 0.018 0.062 < 10�3 2.721 14
Thompson 7 0.010 4.108 0.137 3.900 0.135 0.208 0.005 5.339 3
Thompson 7 0.030 3.673 0.038 3.515 0.037 0.158 < 10�3 4.493 6
Thompson 7 0.050 3.396 0.009 3.265 0.009 0.132 < 10�3 4.030 92
Thompson 7 0.070 3.124 0.028 3.026 0.027 0.097 < 10�3 3.213 8
Thompson 7 0.090 2.921 0.024 2.836 0.024 0.084 < 10�3 2.976 10
Thompson 7 0.100 2.910 0.022 2.807 0.022 0.103 < 10�3 3.680 6
Thompson 8 0.030 4.398 0.136 4.181 0.128 0.217 < 10�3 5.195 1
Thompson 8 0.070 3.732 0.015 3.600 0.015 0.132 < 10�3 3.670 35
Thompson 8 0.090 3.506 0.013 3.391 0.013 0.115 < 10�3 3.391 41

Table 11: Multi-armed bandit algorithm performance in OPTN environment
Entry and Death are the Poisson entry rate of entry and the the Geometric rate of
departure. Mean and Std refers to the average number of matched patients over 1000
periods. Difference and Ratio compare the average improvement between the
algorithm and Myopic. N is the number of 1000-period simulations that used that
particular configuration.
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Algo. Entry Death MAB Myopic Di↵erence p-value Improvement (%) N
Mean Std Error Mean Std Error

UCB1 3 0.010 1.640 0.018 1.579 0.018 0.061 < 10�3 3.866 11
UCB1 3 0.030 1.343 0.010 1.302 0.010 0.041 < 10�3 3.168 26
UCB1 3 0.050 1.195 0.014 1.159 0.014 0.036 < 10�3 3.106 6
UCB1 3 0.070 1.087 0.003 1.061 0.003 0.027 < 10�3 2.504 306
UCB1 3 0.090 1.004 0.002 0.983 0.002 0.021 < 10�3 2.178 396
UCB1 3 0.100 0.997 0.014 0.970 0.014 0.027 0.002 2.763 5
UCB1 4 0.010 2.275 0.030 2.190 0.029 0.085 < 10�3 3.881 7
UCB1 4 0.030 1.902 0.014 1.839 0.014 0.064 < 10�3 3.458 19
UCB1 4 0.050 1.702 0.014 1.647 0.014 0.055 < 10�3 3.328 17
UCB1 4 0.070 1.570 0.003 1.527 0.003 0.043 < 10�3 2.794 436
UCB1 4 0.090 1.457 0.003 1.422 0.003 0.035 < 10�3 2.470 336
UCB1 4 0.100 1.419 0.004 1.387 0.004 0.032 < 10�3 2.333 168
UCB1 5 0.010 2.907 0.051 2.776 0.050 0.131 < 10�3 4.726 5
UCB1 5 0.030 2.489 0.019 2.395 0.019 0.094 < 10�3 3.945 14
UCB1 5 0.050 2.260 0.027 2.174 0.027 0.085 0.001 3.917 4
UCB1 5 0.070 2.080 0.010 2.022 0.010 0.058 < 10�3 2.876 38
UCB1 5 0.090 1.942 0.008 1.893 0.008 0.050 < 10�3 2.627 63
UCB1 5 0.100 1.866 0.021 1.823 0.021 0.043 0.012 2.360 4
UCB1 6 0.010 3.521 0.085 3.354 0.086 0.167 0.010 4.984 3
UCB1 6 0.030 3.077 0.027 2.956 0.026 0.122 < 10�3 4.112 11
UCB1 6 0.050 2.772 0.024 2.683 0.024 0.089 < 10�3 3.322 10
UCB1 6 0.070 2.632 0.011 2.544 0.011 0.088 < 10�3 3.452 41
UCB1 6 0.090 2.451 0.010 2.376 0.009 0.075 < 10�3 3.158 54
UCB1 6 0.100 2.368 0.018 2.302 0.018 0.065 < 10�3 2.826 15
UCB1 7 0.010 4.047 0.151 3.875 0.144 0.172 0.017 4.447 3
UCB1 7 0.030 3.653 0.033 3.525 0.033 0.129 < 10�3 3.648 9
UCB1 7 0.050 3.400 0.009 3.267 0.009 0.133 < 10�3 4.064 85
UCB1 7 0.070 3.183 0.026 3.079 0.026 0.104 < 10�3 3.378 9
UCB1 7 0.090 2.959 0.023 2.867 0.023 0.093 < 10�3 3.241 11
UCB1 7 0.100 2.890 0.026 2.797 0.025 0.093 < 10�3 3.321 6
UCB1 8 0.030 4.315 0.116 4.128 0.110 0.186 < 10�3 4.510 1
UCB1 8 0.070 3.720 0.015 3.591 0.015 0.129 < 10�3 3.591 37
UCB1 8 0.090 3.489 0.014 3.379 0.014 0.110 < 10�3 3.263 35
UCB1 10 0.050 5.174 0.083 4.946 0.081 0.228 < 10�3 4.610 7

Table 12: Multi-armed bandit algorithm performance in OPTN environment
(contd)
Entry and Death are the Poisson entry rate of entry and the the Geometric rate of
departure. Mean and Std refers to the average number of matched patients over 1000
periods. Difference and Ratio compare the average improvement between the
algorithm and Myopic. N is the number of 1000-period simulations that used that
particular configuration.
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Entry Death Adj. Death Closest ImprovementAtClosest

2 3.000 0.030 0.010 0.010 3.866
4 3.000 0.050 0.017 0.020 3.602
6 3.000 0.070 0.024 0.020 3.602
12 4.000 0.030 0.008 0.010 3.881
14 4.000 0.050 0.013 0.010 3.881
16 4.000 0.070 0.018 0.020 4.297
22 5.000 0.030 0.006 0.010 4.726
24 5.000 0.050 0.010 0.010 4.726
26 5.000 0.070 0.014 0.010 4.726
32 6.000 0.030 0.005 0.010 4.984
34 6.000 0.050 0.009 0.010 4.984
36 6.000 0.070 0.012 0.010 4.984
44 7.000 0.050 0.007 0.010 4.447
46 7.000 0.070 0.010 0.010 4.447
61 3.000 0.030 0.010 0.010 3.866
63 3.000 0.050 0.017 0.020 3.602
65 3.000 0.070 0.024 0.020 3.602
71 4.000 0.030 0.008 0.010 3.881
73 4.000 0.050 0.013 0.010 3.881
75 4.000 0.070 0.018 0.020 4.297
81 5.000 0.030 0.006 0.010 4.726
83 5.000 0.050 0.010 0.010 4.726
85 5.000 0.070 0.014 0.010 4.726
91 6.000 0.030 0.005 0.010 4.984
93 6.000 0.050 0.009 0.010 4.984
95 6.000 0.070 0.012 0.010 4.984
103 7.000 0.050 0.007 0.010 4.447
105 7.000 0.070 0.010 0.010 4.447

Table 13: Approximate comparison to a chunk-matching algorithm
Rough approximation of our MAB method performance to a chunk-matching algorithm
(see text for details). Entry and Death are entry and death rates in the original
environment; Adj. Death is an adjusted death rate to take into account that only one
pair enters per period; Closest is the closest death rate we have in the original
environment; ImprovementAtClosest refers to the improvement at the closest death
rate in the original environment.

49



www.manaraa.com

Part II
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Heterogenous Production

Functions, Panel Data, and

Productivity Dispersion

Jeremy Fox, Vitor Hadad, Stefan Hoderlein

Amil Petrin, Robert Sherman

1 Introduction

Appropriately modeling unobserved heterogeneity is one of the foremost challenges

faced by econometricians. In the context of panel data, it has become standard to

controlling for unobserved heterogeneity via a fixed e↵ects approach, where we do not

impose restrictions the distribution of latent heterogeneity parameters conditional on

observable characteristics Wooldridge (2010). However, the most ubiquitous fixed

e↵ects strategy in panel data is via the introduction of a time-invariant random in-

tercept (Arellano, 2003), and there are many instances of economic problems where

this is might not be appropriate (Browning et al., 2007).

Here, we present constructive identification and estimation results for the moments
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and marginal distribution of random coe�cients in a linear panel data model with

two random coe�cients

Yit = Ait +XitBit + ZT

it
�t (1)

where the intercept Ait and slope Bit follow a specific autoregressive process but

are otherwise allowed to be arbitrarily correlated with all regressors, and Zit is a

(potentially large) vector of covariates associated with individual-invariant coe�cients

�.

Our results develop upon and extend the results of earlier work by Graham and

Powell (2012), who only focus on the first moments of the random coe�cients and have

stricter timing assumptions than ours. Another paper is Arellano and Bonhomme

(2011), who, like us, provide a method for identification and estimation of higher

moments and distributional characteristics of random coe�cients, but they maintain

certain regularity assumptions that we do not impose. Our model also permits that

lagged dependent variables to be regressors. More broadly, this paper contributes

to the larger literature of panel data models with unobserved heterogeneity, as we

discuss below.

In our particular application, we take Yit to be value-added log-production, while

the two random coe�cients represent total factor productivity (TFP) and the elas-

ticity of one of the inputs in a Cobb-Douglas model of production. There is strong

evidence for heterogeneity in this setting, where it is known as productivity disper-

sion. In the United States, Syverson (2004) finds large plant-level discrepancies in

TFP, noting that within four-digit SIC industries “the plant at the 90th percentile

of the productivity distribution makes almost twice as much output with the same

measured inputs as the 10th percentile plant”, and a later survey by Syverson (2011)

confirms this to be a typical finding. In fact, other work by (Hsieh and Klenow,
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2009) indicates that this gap may be small compared to other countries. In our work

we note, however, that the large observed variation in TFP might be a product of

restrictive statistical models: when only the intercept is able to vary, it may end up

absorbing most the heterogeneity in the data, leading to inflated estimates of the

standard deviation. On the other hand, we remark that our specific model and data

di↵er from the ones above so we cannot directly compare our results, but leave it as

a suggestion for future research.

2 Background and literature review

Panel data and heterogeneity In full generality, panel data models can be rep-

resented as

Yit = m(Hit, Xit, Uit) (2)

where Yit is the dependent variable of interest for unit i at period t, Hit is an

individual-specific, possibly infinite-dimensional object often called the unobserved

heterogeneity component, Xit are observed characteristics, and Uit is an idiosyncratic

error term. For example, Yit might represent an individual’s wages over time, Xit a

vector of characteristics that includes educational attainment, Hit a measure of their

cognitive or manual ability, and Uit measurement error. The econometrician is usu-

ally interested in some functional of this object, such as the average e↵ect of a change

in Xit on Yt while keeping everything else fixed – known as the average partial e↵ect

(APE) (Blundell and Powell, 2003).

Particular care must be taken with the unobserved heterogeneity parameter Hit.

Browning et al. (2007, p.2) define heterogeneity as “the dispersion in factors that are

relevant and known to individual agents when making a particular decision”1. The

1Browning et al were, in turn, paraphrasing Cunha et al. (2005)
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qualifier unobserved serves to emphasize that the econometrician does not have access

to information about such relevant factors. This is problematic because, even when

Hit itself is not of interest, it may preclude the identification of causal parameters. To

continue our running example: even if we observe that workers with higher educational

attainment receive higher wages, we cannot a priori claim that we have found a causal

e↵ect of Xit, as it may be that high-ability (Hit) workers are able to self-select into

higher-paying jobs.

One of the foremost advantages of dealing with panel data is that, under certain

conditions, the econometrician may be able to leverage the existence of multiple

observations per unit of analysis to control for this unobserved heterogeneity. This is

possible, for example, if the researcher additionally imposes that m is linear, and that

all the unobserved heterogeneity can be explained by an individual but time-invariant

shift, as in:

Yit = Ai +XT

it
� + Uit (3)

where all the heterogeneity Hit is entirely subsumed in the random scalar intercept

coe�cient Ai. Such linear panel data models are the econometric “workhorse in

empirical studies” Wooldridge (2005).

The average partial e↵ect in this case is represented by components of the shared

coe�cient �, which can be identified under additional restrictions on the stochastic

process governing Uit.

In common econometric parlance, identification strategies that allow for Cov(Xit, Ait) 6= 0

are named fixed e↵ects models, while those that additionally impose that this co-

variance must be zero are called random e↵ect models.Arellano (2003); Wooldridge

(2010). More generally, Graham and Powell (2012) define the class of fixed e↵ects

methods as one that implies restrictions on the functional form of m and on the
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conditional distribution of the idiosyncratic shocks F (Uit|X·, A·), but leaves the con-

ditional distribution of unobserved heterogeneity F (Ait|Xit) unrestricted. A stricter

class of random e↵ects methods additionally imposes an independence assumption be-

tween A· and X·. While facilitating identification and estimation, the latter is harder

to motivate economically – it would mean, in our example, that workers’ wages were

unrelated to their unobserved ability (see Griliches (1977) for a discussion).

Random coe�cients In Equation 3, all the heterogeneity is subsumed into one

random scalar that enters the model additively. While such models are extremely

common in applied work, their ubiquitousness may be explained more for their con-

venience than for their economic realism. As put by Browning et al. (2007, p.11),

Almost always decisions on how to include allowance for heterogeneity are
made using conventional schemes that have been designed by statisticians
to put in the heterogeneity in such a way that we can immediately take
it out again.

Therefore, in this paper we focus on partially rolling back some of the assump-

tions above and allow for a more general case with more than one correlated random

coe�cient.

We will be working with a specific version of this general random coe�cients

model

Yit = Ait +XT

it
Bit + ZT

it
� (4)

where now Hit = [Ait, BT

it
]T , so that now we have vector-valued heterogeneity. More-

over, we will be principally interest with the case when Ait, Bit are endogenous, that

is, not independent of Xit (in the opposite case we say that the random coe�cients

are exogenous).

The econometric literature dealing with this more general case is substantially
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smaller. Early work by Swamy (1970) studied a panel data model with exogenous,

stationary random coe�cients and produced a feasible GLS estimator for random

coe�cient averages. Mundlak (1978) and Chamberlain (1984) were one of the first to

study panel data models with correlated random coe�cients and derived e�cient es-

timators under parametric assumptions about the distribution of random coe�cients

and errors. Chamberlain (1992) derived an e�cient semiparametric estimator of the

first moment of random coe�cient under regularity assumptions. Later, Arellano and

Bonhomme (2011) produced identification results for higher moments of the distribu-

tion of random coe�cients under similar conditions, while Graham and Powell (2012)

extended his approach to obtain the first moment in the irregular case when such

assumptions are not satisfied. As we will see, the main feature of irregular identifica-

tion is convergence rates smaller than root-n (Lewbel, 2016), which in turn happens

due to the dependence on aspects of “small” subpopulations defined on measure-zero

sets.

It should also be noted that even without panel data, there may be instances

where aspects of random coe�cients may be identified by if the variation in Xit can

be explained by variation in a set exogenous excluded variables. Examples of such

triangular models include Heckman and Vytlacil (1998), Hoderlein et al. (2010), and

Hoderlein et al. (2017).

Production function estimation Our illustrative empirical application will in-

volve the identification and estimation of a production function, so that Yit will rep-

resent output and Xit inputs to production. This is a vast and comprehensive field

on its own, so here we will simply note that two issues are pervasive throughout the

literature and relevant to our paper.

First, there is a need to take heterogeneity into account when estimating produc-

tion functions. The recognition of this fact goes at least as far back as Marschak and
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Pooled Random E�ects

Fixed E�ects This paper

Figure 12: Linear panel data models
Di↵erent assumptions leading to di↵erent panel data models. Each di↵erent marker type
and color indicates a di↵erent individual. Pooled : all observations share same intercept
and slope; “Random e↵ects” random intercept : each observation possesses their own
time-invariant slope, but all share the same slope; “Fixed e↵ects” random intercept : same
as random e↵ects, but intercept and regressors can be correlated (figure shows positive
correlation); This paper : we generalize the model by 1) allowing for intercept and slope to
be correlated with regressors, and 2) allowing both intercept and slope to drift according
to a specific Markovian process.
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Andrews (1944) who note that [p. 145]

[T]he production function will change, even within the same industry, from
firm to firm and from year to year, depending on the technical knowledge,
the will, e↵ort, and luck of a given entrepreneur: these factors (...) may
be represented by one or more random parameters.

Second, that this heterogeneity is plausibly endogenous, since a firm’s choice of

inputs is likely correlated with their own (unobserved) productivity (Gandhi et al.,

2011). Empirical applications usually address this issue via a dynamic panel approach

(as in Arellano and Bond (1991)) or via proxy variable approaches (as in Levinsohn

and Petrin (2003)).

In allowing for correlated random coe�cients, our paper incorporates a flexible

form of vector-valued heterogeneity that also takes the endogeneity problem into

account. The next sections will sketch our general argument.

3 Model and assumptions

From now on, in order to reduce clutter we will drop the i subscript. For 1  t  T ,

define

Yt = At +BtXt

where Xt is a scalar, and At, Bt are scalar random coe�cients that evolve according

to an AR(1) Markov process.

At = At�1 + Ut (5)

Bt = Bt�1 + Vt (6)
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We will make the following su�cient assumptions for identifiability. Some of these

are known to be stronger than necessary, and we will mention how to relax them later

on. For ease of notation, let us denote Wt = [Xt, Xt�1]T

Assumption 3.1. Conditional on recent covariates Wt, contemporaneous shocks are

independent from past shocks.

For 2  t  T, (Ut, Vt) ? {Us, Vs}t�1
s=0 | Wt (7)

Assumption 3.2. Shocks are sequentially independent from all covariates

8t, Ut, Vt ? (X1, · · · , Xt) (8)

Assumption 3.3. The covariate associated with the random coe�cient is continu-

ously distributed and is supported on the entire real line for all periods. Furthermore,

their joint distribution is non-degenerate.

supp(X1) = · · · = supp(XT ) = R and 8s 6= t, P (Xs = Xt) = 0 (9)

Assumption 3.4. Nonsingularity of the covariate matrix.

For 2  t  T, E[WtW
T

t
|X2 �X1 = 0] is nonsingular (10)

We should note that assumptions 3.1 and 4.5 allow for future regressors to be

correlated with past shocks. In the context of firm profit maximization, this means

that a firm is allowed to choose future inputs based on their previous productivity.

In a di↵erent context, this model would also allow for a dynamic model with Xt =

Yt�1. Crucially, we do not make any assumptions of contemporaneous independence

between random coe�cients and regressors.
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Assumption 3.3 is a simplifying “no-stayer” assumption that will facilitate some of

the asymptotic derivations below. Assumption 3.4 is a common technical assumption

often used for generic identification in linear models.

4 Identifying random coe�cient moments

In this section, we show how to identify the rth moments of the random coe�cients

(At, Bt). Broadly, our identification strategy will be constructive, and follow these

four steps.

1. Identify shock moments E[U `

t
V r�`

t ]

2. Express the conditional moments of the regressand E[Y `

1 Y
r�`

2 |W2i] as a func-

tion of conditional moments of random coe�cients E[A`

t
Br�`

t |W2] and shocks

E[U `

t
V r�`

t ]

3. Invert the above so as to represent conditional moments of random coe�cients

as a function of conditional moments of the regressand and shocks E[U `

t
V r�`

t |W2]

4. Integrate out to get unconditional moments E[A`

t
Br�`

t ]

4.1 First period moments

Let us start with the first moment (r = 1). In this case, we are required to have

T � 2 consecutive waves of panel data.

We begin by simply reminding ourselves of the system of equations for these two

periods.

8
>><

>>:

Y1 = A1 +B1X1

Y2 = A2 +B2X2

(11)
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Let’s expand the coe�cients according to our model equations 3.

8
>><

>>:

Y1 = A1 +B1X1

Y2 = A1 + U2 +B1X2 + V2X2

(12)

Step 1 In order to identify shocks, we consider the expectation of the di↵erence

between the two periods, conditioning on some point W2 = w2 = (x, x).

E[Y2 � Y1 | W2 = w2] = E[U2] + E[V2]x (13)

The expression above contains two caveats. First, that thanks our full support as-

sumption 3.3, we can choose any point on R2 to condition on, including a point where

X1 = X2 = x as we just did. Second, that Assumption 3.1 allowed us to drop the

conditioning for the shocks.

Now, note that the moments E[U2] and E[V2] on the right-hand side are solutions

to this minimization problem

min
✓u,✓v

E[(Y2 � Y1 � ✓u � x✓v)
2 | W2 = w2] (14)

and that the solution is unique, by virtue of the strict convexity of the quadratic

function and the full rank assumption. It follows that the shock moments E[U2] and

E[V2] are generically identified, and so are �1 and �2.

Step 2 For this step, we simply have to take expectations of 12, now conditioning

on W2 = w2 = (x1, x2). (Note we have dropped the constraint X1 = X2).

8
>><

>>:

E[Y1|W2] = E[A1|W2] + E[B1|W2]x1

E[Y2|W2] = E[A1|W2] + E[U2] + E[B1 | W2]x2 + E[V2]x2

(15)
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Step 3 Writing the previous equation in matrices after a little rearranging, we get:

2

64
E[Y1|W2]

E[Y2|W2]� E[U2]� E[V2]x2

3

75 =

2

64
1 x1

1 x2

3

75

2

64
E[A1|W2]

E[B1|W2]

3

75 (16)

As long as x1 6= x2, we can invert the first matrix on the right-hand side.

2

64
E[A1|W2]

E[B1|W2]

3

75 =

2

64
1 x1

1 x2

3

75

�1 2

64
E[Y1|W2]

E[Y2|W2]� E[U2]� E[V2]x2

3

75 (17)

since all the quantities on the right-hand side are known, we have identified all the

conditional first moment of our random coe�cients outside the line X1 = X2. Since

our “no-stayer” assumption 3.3 guarantees that a randomly drawn point from the joint

distribution of X1 and X2 will not be on the diagonal, we have generic identification.

Conditional second-period moments are also automatically identified, since due to

our 4.5 assumption we have that shocks are mean-independent from contemporaneous

regressors, which allows us to write

E[A2|W2 = w2] = E[A1|W2 = w2] + E[U2] (18)

E[B2|W2 = w2] = E[B1|W2 = w2] + E[V2] (19)

(20)

Step 4 The final step is simply to integrate out over the distribution of W2 to get

unconditional moments.
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4.2 Second period moments

The identification procedure is analogous, but this time we use the square of our

model equations.

Step 1 Identify shock second moments on the diagonal W2 = w2 = (x, x) using the

following equation

E[(Y2 � Y1)
2 | W2 = w2] = E[U2

2 ] + E[V 2
2 ]x

2 + 2E[U2V2]x (21)

The analogous minimization procedure is

E[U2
2 ], E[V 2

2 ], E[U2V2] = min
✓uu,✓vv ,✓uv

E[(Y2 � Y1 � ✓uu � x2✓vv � 2x✓uv)
2 | W2 = w2]

(22)

point identification is once more possible because the solution to this minimization

problem is unique due to the rank assumption and the fact that the squaring function

is strictly convex.

Steps 2-3 Again drop the constraint X1 = X2, and conditioning on W2 = w2 =

(x1, x2) consider the expectation of the square of our model equations.

2

66664

E[A2
1|x1, x2]

E[B2
1 |x1, x2]

E[A1B1|x1, x2]

3

77775
=

2

66664

1 x2
1 2x1

1 x2
2 2x2

1 x1x2 x1 + x2

3

77775

�1 2

66664

E[Y 2
1 |x1, x2]

E[Y 2
2 |x1, x2]� C1i

E[Y1Y2|x1, x2]� C2i

3

77775
(23)

where C1i and C2i involve only quantities that were already estimated in previous
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steps.

C1i = E[U2] + 2E[U2V2]x2 + E[V 2
2 ]x

2
2 (24)

� 2{E[A1|x1, x2] + E[B1|x1, x2]x2}{E[U2] + E[V2]x2} (25)

C2i = {E[A1|x1, x2] + E[B1|x1, x2]x1}{E[U2] + E[V2]x2} (26)

Note that the relevant matrix above is invertible whenever x1 6= x2.

Step 4 Analogous to step 4 in the first moment case.

4.3 Identifying further moments

The argument above generalizes for arbitrary moments. In fact, if we are only after

moments a finite number of moments of the distribution, then assumption 4.5 as

follows. Let r be a positive integer and for t � 2 define Wt = (Xt�1, Xt). We will say

that (Ut, Vt) are rth-moment independent of Wt if

Definition 4.1.

For 1  j  r, E[U r�j

t V j

t |Wt] = E[U r�j

t V j

t ] (27)

We can replace assumption 4.5 by the following weaker assumption.

Assumption 3.1’ Shocks are rth-moment independent from all covariates

For 1  j  r, E[U r�j

t V j

t |Wt] = E[U r�j

t V j

t ] (28)
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4.4 Extension: fixed coe�cients

Our model can be augmented with an arbitrary number of regressors associated with

coe�cients that are individual-invariant – but not necessarily time-invariant. The

model equations become

Yt = At +BtXt + ZT

t
�t �t : fixed

Identification of the fixed coe�cients happens on Step 1, when the minimization

problem becomes

E[U2], E[V2], �1, �2 = min
✓u,✓v ,✓b1

,✓b2

E[(Y2 � Y1 � a� bx2 + zT2 ✓b1 � zT1 ✓b2)
2|W2 = w2]

(29)

and the argument follows for the same reasons that were previously explained. Once

we have identified �1, �2, we remove them from future computations using the mod-

ified regressand Ỹt := Yt � Zt�t, and the rest of the process delineated above goes

through without further change.

4.5 Identifying the marginal distribution of random coe�cients

In this section we will prove that we can identify the marginal density of random

coe�cients fAtBt . We begin by strengthening some of the assumption above.

Assumption 1.1’ Shocks are jointly independent of past shocks and current and

past regressors

For 1  j  r, (Ut, Vt) ? (U1, V1, · · · , Ut�1, Vt�1, X1, · · · , Xt�1) (30)
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Assumption 1.5 The joint distribution of shocks is positive everywhere

For 1  j  r, �Ut,Vt(s1, s2) := E[exp(i[s1Ut1 + s2Vt2 ])] > 0 8t 2 R2 (31)

Theorem 1 (Nonparametric identification). If Assumptions 1.1’, 1.3, 1.4 and 1.5

are satisfied, then the joint distribution of random coe�cients fAt,Bt is identified for

all t.

Proof sketch Consider two adjacent periods, here denoted by t = 1, 2. Let

�Y1,Y2(s1, s2|x1, x2) := E[exp(i[s1Y1 + s2Y2])|X1 = x1, X2 = x2] be the joint char-

acteristic function of the dependent variable conditional on observable covariates.

We can identify the characteristic function of shocks by evaluating this characteristic

function at the “diagonal” X1 = X2 = x with s2 = �s1 =: s.

�Y1,Y2(�s, s|x, x) = E[exp(i[sY2 � sY1])|X1 = X2 = x] (32)

= E[exp(i[sU2 � sxV2])|X1 = X2 = x] (33)

= E[exp(i[sU2 � sxV2])] * Assumption 1.1’ (34)

=: �U2,V2(s, s
0) s0 := sx (35)

Applying the inverse Fourier transform to the joint characteristic function of the

shocks �U2,V2 , we retrieve their distribution fU2,V2 . Note that the full support As-

sumption 1.3 was used in the inversion step.

Next, as in the moment identification discussion, write

2

64
Y1

Y2

3

75 = �1(x1, x2)

2

64
A1

B1

3

75+ �2(x1, x2)

2

64
U2

V2

3

75 (36)

for appropriate matrices �1 and �2. Now choose t1 = sT�1 and t2 = sT��1
1 (x1, x2)�2(x1, x2).
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Note that this exists whenever x1 6= x2. The conditional characteristic function of

Y1, Y2 then decomposes multiplicatively:

�Y1,Y2(s1, s2|x1, x2) = E[exp(is1Y1 + is2Y2])|X1 = x1, X2 = x2] (37)

= E[exp(it1[A1, B1]
T + itT2 [U2, V2]

T )|X1 = x1, X2 = x2] (38)

= E[exp(it1[A1, B1]
T |X1 = x1, X2 = x2] · E[exp(it2[U2, V2]

T )]

(39)

=: �A1,B1(t1, t2|x1, x2) · �U2,V2(t2) (40)

Since we have already identified �U2,V2(s) for all s 2 R2, we can retrieve �Y1,Y2(t2|x1, x2)

by dividing both sides of Equation 40 by �U2,V2(t2) whenever t2 exists. This implies

that we can retrieve the conditional density function fA1,B1(a1, b1|x1, x2) by apply-

ing the inverse Fourier transform to the ratio
�Y1,Y2 (t2|x1,x2)

�U2,V2 (t2)
. Finally, averaging over

X1, X2, we can retrieve the marginal density fA1,B1 .
2

5 Estimation

Our estimation procedure follows three steps:

1. Use local polynomial regression to estimate shock moments and individual-

invariant coe�cients

2. Use any nonparametric estimator to retrieve estimates of random coe�cient

moments conditional on observables

3. Average out conditional random moments by averaging out conditional mo-

ments, taking care to avoid observations for which X1 ⇡ X2.

Let us consider each one of these steps in detail.

2We are glossing over the fact that we have not identified the characteristic function over the
diagonal x1 = x2. For the complete argument please see a supplementary note.
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Estimating shocks

First moments Regress �Y2 on X2 locally at the diagonal X1 ⇡ X2:

( bE[U2], bE[V2], · ) = arg min
✓U ,✓V ,�

X

i

Kh(�X2i) · (�Y2i � ✓U �X2i✓V � g1(X2i,�X2i; �))
2

(41)

where Kh(·) is a standard kernel with asymptotically zero bandwidth:

hshocks(n) = cshocksn
↵shocks where lim

n!1
hn = 0 (42)

and g1 is a K-order polynomial in X2 and �X2 with coe�cients �. In theory its

inclusion is optional, but we have observed that its presence substantially improves

the quality of the estimates.

If our model included time-invariant coe�cients, they would also be estimated in

this step.

Second moments We estimate the uncentered moments by proceeding similarly

to above:

( bE[U2
2 ], bE[U2V2] bE[V 2

2 ], · ) = (43)

arg min
✓U2 ,✓UV ,✓V2 ,�

X

i

Kh(�X2i) ·
�
�Y 2

2i � ✓U2 � 2X2i✓UV �X2
2i✓V2 � g2(X2i,�X2i; �)

�2

(44)

Naturally, once we have uncentered second moments and first moments, we can

compute estimates of centered moments using the usual formulas for centered mo-

ments, e.g. dV ar[U2] = bE[U2
2 ]� bE[U2]2.
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Conditional random coe�cient moments

Conditional moments of Y1 and Y2 Here we begin by estimating E[Y m

1 Y n

2 |X1 =

x1, X2 = x2] for m,n 2 {(1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}. This can be done using any

nonparametric estimator, but we choose the Nadaraya-Watson for simplicity.

bE[Y1|X1 = x1, X2 = x2] =

P
i
Y1iKh(X1i � x1)Kh(X2i � x2)P
i
Kh(X1i � x1)Kh(X2i � x2)

(45)

where Kh is again a standard kernel endowed with asymptotically vanishing band-

width

hnw(n) = cnw�̂Xn
�↵nw (46)

and �̂X is an estimate of Std(X1) = Std(X2). Note that for the theoretical MISE-

minimizing bandwidth, one should set ↵nw = 1
6 .

Solving for first moments Once in possession of all the previous estimates, we

can solve for estimates of conditional random coe�cient moments using the empirical

analogs of equation 4.1.

Unconditional random coe�cient moments

In this final step, we must exclude observations near the diagonal X1X2, and then

average the conditional moments associated with the remaining observations. For the

first moment of the intercept, we compute

Ê[A1] =

P
n

i=1
bE[A1|X1i, X2i] · 1{|X2i �X2i| > t1(n)}P

n

i=1 1{|X2i �X2i| > t1(n)}
(47)

and analogously for the slope and for higher moments. Here, t1(n) and t2(n) (for
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second moments) are censoring threshold functions that vanish asymptotically. Con-

sistency and asymptotic normality of the resulting estimates are ensured provided

that

t1(n) ⌘ ccens1�̂X2n
� 1

4 for first moments (48)

t2(n) ⌘ ccens1�̂X2n
� 1

8 for second moments (49)

where ccens1, ccens2 are constants that are not pinned down by theory. In order to

choose these constants, we resort to experimentation as shown in section 7.

6 Asymptotic results

In this section we present an abridged version of our asymptotic results without

proof.3

Definition 6.1. Define the following objective functions

Ĝn(↵) =
1

n

nX

i=1

⇣
Ê(A1|X1, X2)� ↵

⌘2

1{|X2 �X1| > hn}
�

(50)

�(↵) = E

⇣
Ê(A1|X1, X2)� ↵

⌘2
�

(51)

and let ↵̂ and ↵0 be the minimizers of 50 and 51. Explicitly:

↵̂ =

P
n

i=1 Ê[A1|Xi1, X2i]1{|X2i �X1i| > hn}P
n

i=1 1{|X2i �X1i| > hn}
(52)

↵0 = E[E[(A1|X1, X2)]] = E[A1] (53)

Theorem 2 (Consistency). If the following two conditions hold

1. sup
↵

���Ĝn(↵)� �(↵)
��� 2 op(1)

3For an elaborated discussion, please see supplementary material available upon request.)
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2. For each � > 0, inf↵:|↵�↵0|<� �(↵) > �(↵0)

Then |↵̂� ↵0| 2 op(1)

Theorem 3 (Asymptotic Normality for conditional moments). Suppose that x1 6= x2

and f(x1, x2) > 0. If the following conditions hold

1. For k 2 {0, 1}, the function rk(x1, x2, ✓) defined below has continuous second

partial derivative with respect to x1.

rk(x1, x2, ✓) = E[(Y2 � Y1 � EU2 � EV2X2)X
k

2 |X1 = x1, X2 = x2]f(X1 = x = 1, X2 = x2)

(54)

2. The function st(x1, x2) = E[Y1|X1 = x1, X2 = x2]f(X2 = x2|X1 = x1) is twice

continuously di↵erentiable

3. The marginal density of the first regressor f(x1) is twice continuously di↵eren-

tiable

4. The conditional means of Y1 and Y2 are estimated with uniform kernels endowed

with bandwidth hnw(n) / n�↵nw , where 1
5 < ↵nw < 1

2

5. The censoring threshold functions decay as the following rates t1(n) / n� 1
4 and

t2 / n� 1
8

Then the estimates of conditional first and second moments are asymptotically nor-

mal.

7 Simulations

The purpose of this sections is to provide a simulation study in a setting that is similar

to our empirical application. We begin by generating the first period random coe�-
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cients (A1, B1), their second-period shocks (U2, V2), and regressors for both periods

(X1, X2). They are drawn from a jointly Normal distribution:

2

666666666666664

A1

B1

X1

X2

U2

V2

3

777777777777775

⇠ N

0

BBBBBBBBBBBBBB@

2

666666666666664

2

.4

0

0

.3

.1

3

777777777777775

,

2

666666666666664

9 0.95 1.5 1.5 0 0

0.95 0.4 0.32 0.32 0 0

1.5 0.32 1 0.5 0 0

1.5 0.32 0.50 1 0 0

0 0 0 0 1 0.16

0 0 0 0 0.16 0.1

3

777777777777775

1

CCCCCCCCCCCCCCA

(55)

These number were chosen to roughly reflect the characteristics that we expect

them to have in a real data application. The implied correlation matrix has a very

simple structure.

2

666666666666664

1 0.5 0.5 0.5 0 0

0.5 1 0.5 0.5 0 0

0.5 0.5 1 0.5 0 0

0.5 0.5 0.5 1 0 0

0 0 0 0 1 0.5

0 0 0 0 0.5 1

3

777777777777775

(56)

The remaining variables were created from these in the obvious manner. In order

to understand how our estimator behaves as the number of observation increases, we

used n 2 {500, 2000, 5000, 10000, 20000}.

As seen in Section 5, our method requires the careful tuning of many di↵erent

parameters. Since our methods are not amenable to cross-validation, we simulated

the model in section 1 over a large grid of parameter combinations, which were then
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compared according to their RMSE against the true value. The RMSE-minimizing

parameter configuration for each number of observations is shown on Table 14.

n cshocks ↵shocks cnw ↵nw

500 2 1
5

1
2

1
6

2000 3 1
5

1
2

1
6

5000 4 1
5

1
2

1
6

10000 4 1
5

1
2

1
6

20000 3 1
5

1
2

1
3

Table 14: RMSE-minimizing parameter configurations for our DGP.

Note that the best parameters remain fairly stable as we increase the number of

observations. The most notable variation is in ↵nw: intuitively, when the number

observations is large enough, a much smaller bandwidth is preferred, and that is

translated into a more aggressive choice of exponent. We will use these numbers to

guide our choice of tuning parameters in our empirical application in the next section.

The performance of our estimators is illustrated on Figures 13 and 14 (see also

accompanying tables in the Appendix). We observe that indeed the distribution tends

to concentrate around its true value as the number of observations increases.

7.1 Bootstrap coverage

Tables 15-17 show the coverage of bootstrap confidence intervals for all estimated

parameters. To produce these tables, we generated 2000 datasets using di↵erent

seeds, computed 500 bootstrap estimates in each of these datasets, and calculated

their 0.025 and 0.975 quantiles. The numbers in each cell are the proportion of times

that quantiles straddled the true value.
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Table 15: Bootstrap coverage for shock moments

E[Ut] E[Vt] Std[Ut] Std[Vt] Cov[Ut, Vt] Corr[Ut, Vt]

t=1 0.948 0.942 0.952 0.968 0.942 0.950
t=2 0.951 0.941 0.945 0.964 0.941 0.954

Table 16: Bootstrap coverage for random coe�cient conditional moments

(x1, x2) (-1, 0) (1, 0) (0, 1) (0, -1)

E[A1|X] 0.960 0.920 0.957 0.919
E[B1|X] 0.936 0.929 0.923 0.953
Std[A1|X] 0.920 0.950 0.945 0.932
Std[B1|X] 0.952 0.929 0.932 0.953
Cov[A1, B1|X] 0.940 0.958 0.928 0.936
Corr[A1, B1|X] 0.932 0.966 0.932 0.940

Table 17: Bootstrap coverage for random coe�cient unconditional moments

E[At] E[Bt] Std[At] Std[Bt] Cov[At, Bt] Corr[At, Bt]

t=1 0.945 0.958 0.951 0.928 0.948 0.945
t=2 0.935 0.954 0.951 0.932 0.945 0.941

8 Empirical application

Now we provide an illustration of our methods by estimating a Cobb-Douglas pro-

duction function with random coe�cients for a large number of Indian plants. We

will be using the Annual Survey of Industries (ASI) dataset, released by the Central

Statistical Organization of India for the years 2008 and 2009. This yearly survey

collects data from sampled Indian economic units of production (individual factories,

workshops, and establishments, hereafter called “plants”) that employ more than 10

regular workers.
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From the ASI dataset we extract four variables: gross sale value (value of the

products sold by the plant, as purchased by their clients) St; capital (fixed assets with

a productive life of more than one year) Kt; wages Wt; and production materials Mt.

All variables are in 2005 rupees. We keep only observations that we present in both

years of analysis, and we are left with 13298 observations.4

In addition to the variables above, we generate our model variables:

Yt = log

✓
St �Mt

Wt

◆
Xt = log

✓
Kt

Wt

◆
(57)

where Yt represents production value-added after sales normalized by wages, and Xt

represents normalized capital. Summary statistics for all variance can be found in

subsection 10.1 in the Appendix.

Following Allcott et al. (2016), we also construct variables nic1987, corresponding

to the 1987 Indian three-digit National Industry Code, state indicating the plant

location, and panel group that is a concatenation of the state code and the first two

digits of nic1987.

Interpretation Each plant’s output is modeled as a Hicks-neutral Cobb-Douglas

function. Therefore, the random variable At represents total factor productivity, while

Bt represents the expenditure share on capital inputs.

Included in the modeling decision above there are several assumptions. First,

timing: we are assuming that each firm observes the entire history of past inputs and

outputs (Y1, X1, · · · , Yt�1, Xt�1), as well as the values of their own TFP and capital

share (A1, B1, · · · , At�1, Bt�1). Based on this information, they choose this period’s

inputs Xt. Once the decision is taken, this period’s shocks Ut, Vt are revealed, and

production Yt is realized.

4Additional information about data cleaning and manipulation is available as Jupyter
Notebook at https://github.com/halflearned/FHHPS/blob/master/empirical/FHHPS_data_
cleaning.html
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Second, we have left the stochastic process governing the evolution of Xt un-

restricted. In particular, we do not impose the assumption that firms are profit-

maximizers. This is important for studying unproductive firms as well.

Discussion The result of our empirical application are presented on Tables 18-20.

Additionally, we present the results of similar ordinary panel regressions and quantile

panel regressions on Tables 37 and 385 Our main findings are as follows.

First, our estimates of the first moment of random coe�cients are quite similar to

those given by traditional linear panel data models, with bE[A1] ⇡ 1.5 and bE[B1] ⇡

0.25. This indicates that allowing only for scalar-valued additive heterogeneity would

not preclude reasonably accurate estimation in this particular data set.

Second, our estimates suggest more heterogeneity than traditional models. The

fixed-e↵ect quantile regression result on Table 38 indicates that the 0.025- and 0.975-

quantiles of the slope parameter are around 0.23 and 0.30, respectively. On the other

hand, our results output dStd[B1] ⇡ 0.57, indicating that the support of the slope is

much larger.6

Third, while the distribution of total factor productivity and capital share seems

to vary a lot across plant, their average tends to be fairly stable over time, as we

understand from bE[U2] ⇡ bE[V2] ⇡ 0. Fourth and finally, total factor productivity

and capital share seem to be quite strongly negatively correlated, with [Corr[A1, B1] =

�0.44. We could not find a satisfactory explanation for this phenomenon, especially

in light of the fact that we have at the same time [Corr[U2, V2] = 0.91, and leave it

for future research.

5Quantile panel regressions were run using the R package rqpd that is based in Koenker and
Hallock (2001) and Koenker (2004).

6 Incidentally, our standard deviation estimate of dStd[B1] = 0.57 would also imply that supp(B1)
is not a subset of the unit interval: by Popoviciu (1935)’s inequality, the maximum attainable
variance for random variable Z with supp(Z) = [0, 1] is 1

4 .
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Table 18: Empirical application: Shock Estimates

E[U2] E[V2] Std[U2] Std[V2] Cov[U2, V2] Corr[U2, V2]

Estimate 0.011 -0.002 0.704 0.050 0.032 0.91
Std. Error 0.010 0.005 0.016 0.018 0.005 0.539
Min -0.014 -0.013 0.664 0.008 0.018 0.463
Lower CI (2.5%) -0.010 -0.012 0.67 0.014 0.023 0.572
Median 0.011 -0.001 0.702 0.052 0.032 0.872
Upper CI (97.5%) 0.028 0.007 0.73 0.086 0.044 2.612
Max 0.0303 0.010 0.735 0.095 0.047 3.696

Table 19: Empirical application: Random Coe�cient Estimates (first period)

E[A1] E[B1] Std[A1] Std[B1] Cov[A1, B1] Corr[A1, B1]

Estimate 1.582 0.238 1.369 0.571 -0.342 -0.437
Std. Error 0.037 0.016 0.127 0.047 0.108 0.096
Min 1.470 0.193 1.050 0.452 -0.669 -0.668
Lower CI (2.5%) 1.513 0.205 1.121 0.477 -0.518 -0.615
Median 1.583 0.237 1.369 0.566 -0.339 -0.440
Upper CI (97.5%) 1.657 0.273 1.562 0.663 -0.142 -0.242
Max 1.687 0.286 1.602 0.697 -0.056 -0.088

Table 20: Empirical application: Random Coe�cient Estimates (second period)

E[A2] E[B2] Std[A2] Std[B2] Cov[A2, B2] Corr[A2, B2]

Estimate 1.593 0.236 1.540 0.573 -0.310 -0.351
Std. Error 0.037 0.017 0.113 0.047 0.109 0.092
Min 1.468 0.194 1.274 0.452 -0.644 -0.544
Lower CI (2.5%) 1.521 0.206 1.318 0.479 -0.485 -0.514
Median 1.598 0.238 1.538 0.570 -0.308 -0.348
Upper CI (97.5%) 1.670 0.271 1.715 0.662 -0.112 -0.155
Max 1.694 0.289 1.751 0.699 -0.023 -0.001
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Figure 13: Shock estimates in simulated data
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Figure 14: Random coe�cient estimates in simulated data
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Figure 15: Shock estimates using ASI data
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Figure 16: Random coe�cient estimates using ASI data (2008)
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Figure 17: Random coe�cient estimates using ASI data (2009)
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9 Conclusion and future work

In this paper, we presented methods for identification of moments and nonparametric

marginal distributions of endogenous random coe�cient models in linear panel data

models. Our identification strategy is constructive, immediately leading to a rela-

tively simple estimators that are shown to be consistent and asymptotically normal,

although they converge at rates slower than root-n due to irregular identification. We

illustrate the use of our methods by estimating Cobb-Douglas coe�cients in produc-

tion functions on Indian plant-level microdata.

For future work, we leave the following research directions. First, our method

requires the tuning of many parameters that are not amenable to cross-validation.

Are there better heuristics than those we used here to deal with this issue? Second,

our method allows a maximum of two correlated random coe�cients, but one can

conceive situations where this might be an appropriate assumption. Can we exploit

a similar method and expand to more than two coe�cients?
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10 Appendix

10.1 Summary statistics

Table 21: ASI survey data: summary statistics

K2008 M2008 W2008 S2008 K2009 M2009 W2009 S2009

mean 16.8 17.9 15.6 18.4 16.8 17.9 15.6 18.4
std 2.63 2.29 1.97 2.29 2.67 2.31 1.99 2.32
min -0.137 8.3 8.14 8.1 -0.207 7.96 7.85 5.83
25% 15.0 16.3 14.1 16.7 15.0 16.3 14.1 16.8
50% 17.0 18.1 15.8 18.6 17.0 18.2 15.8 18.7
75% 18.7 19.5 17.1 20.0 18.7 19.6 17.1 20.1
max 26.3 27.1 23.3 27.4 26.2 27.2 23.2 27.4

Variables are capital K, materials M , wages W and sales value S. Variable units are 2005

rupees (in logs).

Table 22: ASI survey data: correlations

K2008 M2008 W2008 S2008 K2009 M2009 W2009 S2009

K2008 1.0 0.825 0.808 0.827 0.98 0.822 0.812 0.829
M2008 1.0 0.843 0.976 0.823 0.963 0.834 0.948
W2008 1.0 0.861 0.802 0.817 0.971 0.839
Y2008 1.0 0.824 0.944 0.851 0.96
K2009 1.0 0.828 0.814 0.834
M2009 1.0 0.837 0.973
W2009 1.0 0.859
Y2009 1.0

Correlations between capital K, materials M , wages W and sales value S. Variable units are

2005 rupees (in logs).

84



www.manaraa.com

Table 23: Transformed variables: summary statistics

X1 X2 Y1 Y2

mean 1.05 1.09 1.83 1.82
std 1.51 1.51 1.09 1.11
min -14.9 -15.9 -5.93 -7.12
25% 0.188 0.237 1.22 1.18
50% 1.15 1.18 1.83 1.82
75% 2.02 2.06 2.47 2.47
max 7.96 7.96 6.5 9.75

X = log
⇣

K
W

⌘
and Y = log

⇣
S�M
W

⌘

Table 24: Transformed variables: correlations

X1 X2 Y1 Y2

X1 1.0 0.911 0.43 0.401
X2 1.0 0.394 0.433
Y1 1.0 0.717
Y2 1.0

X = log
⇣

K
W

⌘
and Y = log

⇣
S�M
W

⌘

10.2 Simulation results

Here we show how our estimates of shock and random coe�cient moments change as

we increase the number of observations. Throughout, we used the RMSE-minimizing

parameters shown in table 14. To produce the tables below, we generated 8000

datasets for each number di↵erent number of observations, produced the relevant

estimates and computed their respective performance measures.
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Shock moments

Table 25: Performance measures for estimates of E[U2]

bias rel bias abs bias rmse
n

500 -0.0013 -0.0043 0.0979 0.1230
2000 0.0010 0.0032 0.0458 0.0576
5000 0.0000 0.0001 0.0275 0.0342
10000 -0.0001 -0.0002 0.0208 0.0262
20000 -0.0001 -0.0003 0.0181 0.0227

Table 26: Performance measures for estimates of E[V2]

bias rel bias abs bias rmse
n

500 0.0002 0.0023 0.0776 0.0972
2000 -0.0001 -0.0014 0.0356 0.0446
5000 0.0001 0.0006 0.0215 0.0270
10000 -0.0002 -0.0017 0.0163 0.0205
20000 0.0003 0.0029 0.0139 0.0173

Table 27: Performance measures for estimates of Std[U2]

bias rel bias abs bias rmse
n

500 -0.0021 -0.0021 0.0614 0.0780
2000 0.0096 0.0096 0.0302 0.0379
5000 0.0135 0.0135 0.0208 0.0256
10000 0.0109 0.0109 0.0159 0.0197
20000 0.0048 0.0048 0.0116 0.0145
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Table 28: Performance measures for estimates of Std[B2]

bias rel bias abs bias rmse
n

500 -0.0120 -0.0189 0.1242 0.1586
2000 -0.0515 -0.0815 0.0793 0.1034
5000 -0.0733 -0.1159 0.0771 0.0923
10000 -0.0512 -0.0810 0.0559 0.0677
20000 -0.0324 -0.0512 0.0474 0.0601

Table 29: Performance measures for estimates of Cov[U2, V2]

bias rel bias abs bias rmse
n

500 0.0186 0.1175 0.0681 0.0873
2000 0.0237 0.1499 0.0372 0.0473
5000 0.0282 0.1786 0.0312 0.0376
10000 0.0217 0.1375 0.0237 0.0285
20000 0.0097 0.0614 0.0147 0.0186

Table 30: Performance measures for estimates of Corr[U2, V2]

bias rel bias abs bias rmse
n

500 0.1198 0.2397 0.2586 0.6747
2000 0.0736 0.1473 0.1387 0.3689
5000 0.0145 0.0290 0.0613 0.1130
10000 0.0050 0.0100 0.0456 0.0630
20000 0.0077 0.0154 0.0437 0.0601
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Random coe�cient moments

Table 31: Performance measures for estimates of E[A1]

bias rel bias abs bias rmse
n

500 0.0411 0.0205 0.1323 0.1669
2000 0.0344 0.0172 0.0683 0.0856
5000 0.0313 0.0157 0.0476 0.0591
10000 0.0300 0.0150 0.0381 0.0467
20000 0.0057 0.0029 0.0234 0.0293

Table 32: Performance measures for estimates of E[B1]

bias rel bias abs bias rmse
n

500 -0.0637 -0.1593 0.0843 0.1035
2000 -0.0540 -0.1349 0.0578 0.0677
5000 -0.0479 -0.1197 0.0486 0.0547
10000 -0.0433 -0.1083 0.0435 0.0474
20000 -0.0085 -0.0212 0.0164 0.0205

Table 33: Performance measures for estimates of Std[A1]

bias rel bias abs bias rmse
n

500 0.0229 0.0076 0.1119 0.1411
2000 0.0094 0.0031 0.0561 0.0702
5000 0.0013 0.0004 0.0352 0.0443
10000 0.0041 0.0014 0.0257 0.0323
20000 -0.0054 -0.0018 0.0226 0.0282
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Table 34: Performance measures for estimates of Std[B1]

bias rel bias abs bias rmse
n

500 -0.0120 -0.0189 0.1242 0.1586
2000 -0.0515 -0.0815 0.0793 0.1034
5000 -0.0733 -0.1159 0.0771 0.0923
10000 -0.0512 -0.0810 0.0559 0.0677
20000 -0.0324 -0.0512 0.0474 0.0601

Table 35: Performance measures for estimates of Cov[A1, B1]

bias rel bias abs bias rmse
n

500 -0.1401 -0.1477 0.2252 0.2790
2000 -0.1130 -0.1191 0.1396 0.1701
5000 -0.0840 -0.0885 0.0972 0.1174
10000 -0.0840 -0.0885 0.0892 0.1042
20000 0.0006 0.0006 0.0513 0.0643

Table 36: Performance measures for estimates of Corr[A1, B1]

bias rel bias abs bias rmse
n

500 -0.0125 -0.0250 0.1913 0.3675
2000 -0.0042 -0.0085 0.0994 0.1554
5000 0.0220 0.0440 0.0652 0.0862
10000 -0.0010 -0.0019 0.0476 0.0607
20000 0.0333 0.0666 0.0576 0.0769
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10.3 Python module FHHPS

In order to facilitate the adoption of the methods described in this paper by other

researchers, I have developed the Python module FHHPS. Instructions for installations

and usage can be found in the github repository 7. Its API is inspired by the celebrated

scikit-learn library Buitinck et al. (2013), and it should be familiar to statisticians

and machine learning practitioners that use Python. The webpage linked above also

contains one-line instructions for reproducing all of our figures and tables.

7Url: https://github.com/halflearned/FHHPS
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Table 38: Quantile panel regressions

Y ˜X + year2009
Quantile Value Std. Error t value Pr(> |t|)
X[0.025] 0.23587 0.01695 13.91812 0.00000
X[0.25] 0.26844 0.01408 19.07059 0.00000
X[0.5] 0.27424 0.01467 18.69515 0.00000
X[0.75] 0.28232 0.01433 19.69936 0.00000
X[0.975] 0.30993 0.01939 15.98118 0.00000
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